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Abstract

We study many-to-one matching problems between institutions and in-

dividuals where an institution can possibly be matched to more than

one individual. The matching market contains some couples, who view

pairs of jobs as complements. Institutions' preferences over sets of in-

dividuals are assumed to satisfy responsiveness. However, couples'

preferences over pairs of institutions are allowed to violate responsive-

ness. In this setting, �rst we assume that institutions have a common

preference over individuals, and we provide

(i) a complete characterization of all preferences of couples such that

a stable matching exists under the additional assumption that
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couples violate responsiveness in order to be matched at the same

institution, and

(ii) a necessary and su�cient condition on the common preference

of institutions so that a stable matching exists when couples can

violate responsiveness in an arbitrary manner.

Next, we weaken the common preference assumption on institutions'

preferences by requiring common preference only over the members of

each couple. In this setting, we provide

(i) a complete characterization of all preferences of couples such that

stable matching exists, and

(ii) a su�cient condition on the preferences of individuals' such that

a stable matching exists.

Keywords. many-to-one two-sided matching, stability, responsiveness, to-

getherness

JEL Classification Codes. C78, D47

1 Introduction

In many di�erent contexts, there is a centralized matching procedure by

which individuals on one side of the market are matched to institutions on

the other side of the market. These include the market for lawyers in Canada,

children to schools in the USA, doctors and senior-level health-care profes-

sionals in several countries, etc. A matching is pairwise stable if there does

not exist any institution-individual pair that can block it by getting matched

together, such that both of them are better o� compared to their original

matching.

Roth[9] showed that it is possible to design mechanisms which incentivize

only one side of the market to truthfully reveal their preferences. However,

the results on stability have been more promising. The received doctrine

is that stable matchings do exist under appropriate domain restrictions. In
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particular, institutions have to view individuals as substitutes and individuals

must care only about institutions to which they are matched.

Klaus and Klijn[6] showed that a stable matching exists at every prefer-

ence pro�le when couples' preferences satisfy responsiveness. Responsiveness

means that a couple is better o� when any member of the couple is matched

to a more preferred institution keeping the other member �xed.1 However,

Kojima, Pathak and Roth[7] pointed out that responsiveness is not satis�ed

in their data set because couples show strong preference to be matched to

institutions situated in the same geographical area.

It was �rst pointed out by Roth[10] that the existence of a stable matching

is not guaranteed at every preference pro�le in the presence of couples in the

labour market. This can happen because couples may view pairs of jobs

as complements, which would violate responsiveness. This motivates us to

provide a characterization of preference pro�les at which a stable matching

exists despite the violation of responsiveness.

We consider a specialized matching problem between a set of hospitals and

a set of doctors including some couples. We focus on the issue of existence

of stable matchings with couples. We �rst look at the scenario when all

hospitals have a common preference over individual doctors. This can be

justi�ed if hospitals rank doctors according to their grades of some common

examination. Hospitals' preferences over sets of doctors are derived from

the common preference by using responsiveness. Responsiveness says that

for two allocations of a hospital, which di�er by exactly one doctor, the

hospital prefers the allocation with the better doctor. Note that there can

be several responsive preferences over sets of doctors for a given preference

over individual doctors. In our model, di�erent hospitals are allowed to have

di�erent responsive preferences (over sets of doctors).

1Roth and Sotomayer[11] introduced the substitutability condition and showed that it

is su�cient to ensure the existence of a stable matching. Hat�eld and Milgrom[5] showed

that the substitutes condition, which is a natural extension of substitutability, is also

su�cient for stability. Later, Hat�eld and Kojima[4] showed that the bilateral substitutes

condition is su�cient for stability and that responsiveness implies bilateral substitutes.
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Each individual doctor has a strict preference over hospitals. The prefer-

ence of a couple is derived from the preferences of the members of the couple.

We let couples' preferences violate responsiveness in an appropriate way to

capture their willingness to be matched together. Thus, in spirit of Dutta

and Massó[1], we assume that a couple prefers to be matched at the same

hospital rather than being matched to di�erent hospitals. We show that if

hospitals have a common preference over doctors, then a stable matching

exists if and only if each couple's preference does not violate responsiveness

with respect to the more preferred (according to the common preference of

hospitals) member of the couple.

Next, we consider the scenario where couples are allowed to have arbi-

trary preferences over pairs of hospitals. This captures situations where two

particular doctors prefer to stay away from each other. We show that a sta-

ble matching exists in this scenario if and only if for each couple, one of the

following happens: (i) either the members of the couple are ranked consecu-

tively or (ii) there is at most one doctor ranked in-between the members and

one member of the couple is ranked at the bottom of the common preference

of hospitals.

Finally, we weaken the assumption that hospitals have a common prefer-

ence over individual doctors by requiring that they have a common preference

only over the members of each couple. We provide a necessary and su�cient

condition on couples' preferences for the existence of a stable matching. Next,

we look at this problem from hospitals' point of view and provide a su�cient

condition on the preferences of hospitals such that a stable matching exists

for any couples' preferences where the couples can violate responsiveness to

be together.

The rest of the paper is organized as follows. We formally introduce the

model in Section 2. In Section 3, we investigate the existence of a stable

matching when couples' preferences can violate responsiveness in order to be

together and hospitals have a common preference over individual doctors.

In Section 4, we consider the situation where couples' preferences are un-
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restricted (and hospitals have a common preference). Finally, in Section 5,

we relax the assumption of a common preference of hospitals and provide

su�cient conditions for the existence of a stable matching.

2 The framework

We consider many-to-one matching between doctors and hospitals. We de-

note by H the set of hospitals. We use the notation H̄ to denote H ∪ {∅}.
The interpretation of ∅ is that if some doctor is matched to ∅, then that

doctor is practically unmatched (that is, it is not assigned to any hospital).

Each hospital h ∈ H has a �nite capacity, denoted by κh ≥ 2.

We denote by D the set of doctors. We assume that D = F ∪M ∪ S,
where F,M, S are pairwise disjoint sets of doctors. We denote the doctors

in F by {f1, . . . , fk} and those in M by {m1, . . . ,mk}, for some k ∈ N.2

This, in particular, means that F and M have the same number of doctors.

The doctors in F and M together form �xed couples, whereas the doctors

in S are not part of any couple. We call the doctors in S single doctors

and those in M or F non-single doctors. We denote the set of couples by

C = {{f1,m1}, . . . , {fk,mk}} and a generic couple by c = {f,m}.
Throughout this paper, we assume |H| ≥ 2, |D| ≥ 4 and |C| ≥ 1. That

is, there are at least two hospitals and four doctors including at least one

couple. We also assume that the total number of vacancies in all hospitals in

H is equal to the total number of doctors available, that is,
∑

h∈H κh = |D|.
3

An allocation of a couple c = {f,m} is an element (h, h′) of H̄2 where

hospitals h and h′ are matched with doctors f and m, respectively. As we

have already mentioned, here one or both of h and h′ might be empty, which

2By N, we denote the set of natural numbers {1, 2, . . .}.
3The situation where there are more (or less) doctors than the total capacity of hospitals

can be dealt with by considering dummy hospitals (or, doctors) and by making suitable

modi�cation of the preferences over these dummies.
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would mean that the corresponding doctor(s) is(are) not matched with any

hospital.

For notational convenience, we do not use braces for singleton sets.

2.1 Matching

A matching is an allocation of the doctors over the hospitals such that the

total allocation of doctors in a hospital does not exceed its capacity and a

doctor is allocated to at most one hospital (that is, is allocated to exactly

one hospital or no hospital). Below, we provide a formal de�nition of this.

Definition 1 A matching on H ∪D is a mapping µ on H ∪D such that:

(i) for all h ∈ H, µ(h) ⊆ D with |µ(h)| ≤ κh,

(ii) for all d ∈ D, µ(d) ∈ H̄,

(iii) for all d ∈ D and all h ∈ H, µ(d) = h if and only if d ∈ µ(h).

2.2 Preferences

In this subsection, we introduce the notion of preferences of hospitals and

doctors. We also propose certain restrictions on those.

For a set X, we denote by L(X) the set of linear orders, that is, complete,

re�exive, transitive, and antisymmetric binary relations over X. An element

R ∈ L(X) is called a preference over X and P is the strict part of R. Since a

preference is antisymmetric, xRy implies either x = y or xPy. For P ∈ L(X)

and k ≤ |X|, we de�ne rk(P ) as the k-th ranked alternative in P , that is,

rk(P ) = x if and only if |{y ∈ X : yRx}| = k. Moreover, for P ∈ L(X) and

x ∈ X, we de�ne by r(x, P ) the rank of x in P , that is, r(x, P ) = k if and

only if rk(P ) = x.
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2.2.1 Preferences of hospitals

For any hospital h ∈ H, a preference of h over individual doctors, denoted

by P̃h, is de�ned as an element of L(D ∪ {∅}).
We assume dP̃h∅ for all d ∈ D and all h ∈ H. That is, a hospital always

prefers to have a doctor than having a vacant position.

For a hospital h, the feasible sets of doctors (given its capacity) is de�ned

as {D′ ⊆ D : |D′| ≤ κh}. A preference over feasible sets of doctors of a

hospital h is an element of L({D′ ⊆ D : |D′| ≤ κh}). In what follows we

discuss how a preference of a hospital over individual doctors is extended to

that over feasible sets of doctors. We introduce the notion of responsiveness

in this context.

Responsiveness captures the idea of separability that is used in the context

of extending preferences over individual dimensions to that over over multi-

dimensions. Roughly speaking, responsiveness says that hospitals always

prefer it when they get a better doctor (or set of doctors). For example, con-

sider a preference P̃h of a hospital over the individual doctors {d1, d2, d3, d4},
where d1P̃hd2P̃hd3P̃hd4. Then, responsiveness says that the pair (d1, d2) will

be preferred to the pair (d1, d3), the set (d1, d2, d4) will be preferred to the

set (d1, d3, d4), etc. in the extension of P̃h over feasible sets of doctors. It is

important to note that responsiveness does not say how the hospital h will

compare certain sets of doctors, for instance, the pairs (d1, d4) and (d2, d3).

So, one can have a responsive extension of P̃h where the �rst pair is preferred

to the second, and another where the second pair is preferred to the �rst.

Below, we provide a formal de�nition of responsive extension.

Definition 2 Let h be a hospital with capacity κh and let P̃h be a preference

of h over individual doctors. Then, a preference Ph of h over feasible sets of

doctors satis�es responsiveness with respect to P̃h if

(i) the restriction of Ph over individual doctors coincides with P̃h, that is,

for all d, d′ ∈ D ∪ {∅}, dPhd′ if and only if dP̃hd
′, and

7



(ii) for all D′ ( D and all D1, D2 ⊆ D \D′ such that |D′ ∪D1| ≤ κh and

|D′ ∪D2| ≤ κh, we have (D′ ∪D1)Ph(D
′ ∪D2) if and only if D1PhD2.

Next, we de�ne the notion of common preference of hospitals over in-

dividual doctors. As the name suggests, this simply says that all hospitals

have the same preference over the individual doctors. Such a preference can

be viewed as the common ranking of the individual doctors based on the

grades of some common examination, etc. Note that hospitals may, in prin-

ciple, di�er on the extension of this common preference over sets of feasible

doctors.

Definition 3 Let {Ph}h∈H be a collection of preferences of hospitals over

feasible sets of doctors and let P 0
hp ∈ L(D ∪ {∅}). Then, {Ph}h∈H is said to

satisfy Common Preference over Individual doctors (CPI) with respect to P 0
hp

if for all h ∈ H, Ph is responsive with respect to P 0
hp.

Unless mentioned otherwise, we assume CPI for every collection of pref-

erences of hospitals. Whenever we consider a collection of preferences satis-

fying CPI with respect to P 0
hp, we assume for ease of presentation that the

indexation of the doctors in couples is such that fP 0
hpm for every couple

c = {f,m} ∈ C, and that of the couples in C = {{f1,m1}, . . . , {fk,mk}} is
such that m1P

0
hpm2P

0
hp . . . P

0
hpmk. This is without of loss of generality as we

consider only one CPI at every given context.

It is worth mentioning that although our aforementioned assumption is

without loss, the restrictions we put on the female member of a couple in the

later part of the paper are basically imposed on the �commonly preferred�

member of a couple, and thus, do not have anything to do with any particular

member (say, female) of a couple.

2.2.2 Preferences of doctors

Every doctor has a preference over hospitals including the `empty' hospital

∅. Thus, a preference Pd of a doctor d ∈ D is an element of L(H̄). We
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assume hPd∅ for all h ∈ H and all d ∈ D. In other words, all doctors prefer

being matched to some hospital than being unemployed. Now, we proceed

to de�ne the preference of a couple based on the preferences of the members

in it.

Preferences of couples

Each couple has a preference over the pairs of hospitals. Thus, a preference

Pc of a couple c is an element of L(H̄2). Recall that an allocation (h1, h2)

for a couple c = {f,m} means that f is matched with h1 and m is matched

with h2. For a couple c = {f,m} with preference Pc, and a hospital h ∈ H̄,

the conditional preference of m given h1, Pm|h1 , is de�ned as the following

preference of m: for all h1, h2 ∈ H̄, h1Pm|hh2 if and only if (h, h1)Pc(h, h2).

As we have discussed earlier, in this paper we intend to deviate from

responsiveness in a `minimal' way and study its consequences on stability.

We assume that a preference of a couple is responsive except in the situations

where both the members of the couple get to stay together at some hospital.

For instance, if f prefers h1 to h2 and m prefers h2 to h1, then, in contrast to

responsiveness where the pair (h1, h2) should have been preferred to both the

pairs (h1, h1) and (h2, h2), we allow for the couple {f,m} to prefer (h1, h1)

or (h2, h2) or both to the pair (h1, h2). Clearly, we allow this because at the

allocation (h1, h1) or (h2, h2), the members of the couple can bene�t from

staying together. We call this `preference for togetherness'. Note that we

still assume that a couple prefers an allocation where both its members are

matched to another where at least one member is unmatched.

To de�ne the notion of responsiveness violated for togetherness, we use

the notion of responsiveness for couples' preferences. This notion of respon-

siveness is exactly the same as that for a preference of a hospital. However,

for the sake of completeness, we present the formal de�nition of this here.

Definition 4 Let c = {f,m} be any couple and suppose Pf and Pm are the

preferences of f and m, respectively. Then, a preference Pc ∈ L(H̄2) of the

couple c is called responsive with respect to Pf and Pm if, for all h, h1, h2 ∈ H̄,

we have
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(i) (h, h1)Pc(h, h2) if and only if h1Pmh2, and

(ii) (h1, h)Pc(h2, h) if and only if h1Pfh2.

Now, we are ready to de�ne the notion of responsiveness violated for

togetherness for preferences of couples.

Definition 5 Let c = {f,m} be any couple and let Pf and Pm be the prefer-

ences of f and m, respectively. Then, a preference P̄c ∈ L(H̄2) of c satis�es

responsiveness violated for togetherness (RVT) if there exists a responsive

(with respect to Pf and Pm) preference Pc of c such that

(i) for all h ∈ H and all (h1, h2) ∈ H̄2, if (h, h)Pc(h1, h2) then we have

(h, h)P̄c(h1, h2), and

(ii) for all (h, h′), (h1, h2) ∈ H̄2 such that h 6= h′ and h1 6= h2, we have

(h, h′)Pc(h1, h2) if and only if (h, h′)P̄c(h1, h2).

Note that RVT implies that couples' preferences can violate responsive-

ness only in order to be together at some hospital. Also, by taking h1 = h2 in

Condition (i) of De�nition 5, it follows that for all h, h′ ∈ H, (h, h)Pc(h
′, h′)

if and only if (h, h)P̄c(h
′, h′).

2.2.3 Preference pro�les and matching problems

A preference pro�le is a collection of preferences for all the doctors in D,

all the couples in C, and all the hospitals in H, where hospitals' preferences

are assumed to be responsive. Thus, a preference pro�le, denoted by P˜ , is a
collection of preferences ({P˜d}d∈D, {P˜ c}c∈C , {P˜h}h∈H) where for all d ∈ D,

c ∈ C and h ∈ H, P˜d is a preference of doctor d, P˜ c is a preference of couple
c and P˜h is a responsive preference over feasible sets of doctors of hospital

h, respectively.

By a matching problem, we mean a set of hospitals with corresponding

capacities, a set of doctors with its partition into the sets F , M , and S, and

a preference pro�le.
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Throughout the paper, we maintain the following notational terminology.

Whenever we refer to a given collection of preferences of hospitals or couples

in any context, we use the superscript 0. For instance, we have used the

notation P 0
hp to denote a CPI, and later we will use P 0

H and P 0
C to denote a

given collection of preferences of hospitals and couples, respectively.

2.3 Stability

Our model is formally equivalent to a many-to-many matching market as

a couple looks for two positions and hospitals have at least two positions.

Thus, one can have di�erent notions of stability based on di�erent types of

permissible blocking coalitions.4

Blocking pairs can be a hospital and a single doctor or a pair of hospitals

and a couple.

We say a hospital h is `interested' in a set of doctors D′ at a matching µ

if there is D′′ ⊆ µ(h) such that {(µ(h) \D′′) ∪D′}Phµ(h). In other words, a

hospital is interested in a set of doctors at a matching if it prefers to appoint

those doctors by possibly removing some of its existing/matched doctors (to

adjust its capacity). Similarly, we say a doctor d (couple c) is interested in a

hospital h (pair of hospitals (h, h′)) at a matching µ if hPdµ(d) ((h, h′)Pcµ(c)).

Note that if a hospital is interested in a set of doctors or a doctor (couple) is

interested in a hospital (pair of hospitals) at a matching µ, then it must be

that they are not (already) matched at µ.

Now, we de�ne the notion of (individual) blocking between a hospital and

a single doctor.

Definition 6 For a single doctor s, a hospital h, and a matching µ, we say

(h, s) blocks µ if both h and s are interested in each other at µ.

Thus, a hospital and a single doctor block a matching if they are not

matched together at that matching but prefer to be so.

4See Roth[9], Roth[10], Konishi and Ünver[8], Echenique and Oviedo[2] for some alter-

native notions of stability in many to many matching problems.
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Next, we de�ne the notion of blocking between a pair of hospitals and

a couple. A pair of hospitals and a couple, who are not already matched,

block a matching if the couple prefers to be matched with that pair of hos-

pitals, and the hospitals from that pair who are getting a new doctor from

the couple are interested in getting it. Thus, the crucial thing here is that

one of the members of the blocking couple might already be matched with

one of the hospitals in the blocking pair. In that case, the other hospital

must be interested in getting the other member of the couple. One might

think that this case can be captured by our notion of (individual) blocking

between the `other hospital' and the `other doctor'. Firstly, note that we have

such notion of blocking only between hospitals and single doctors. Secondly,

even if we de�ne the notion of blocking between arbitrary (not necessarily

single) individual doctor and hospital, that would not capture this situation

as the other doctor might not be interested in the other hospital according

to his/her individual preference but can be interested according to his/her

couple preference.

Definition 7 For a couple c = {f,m}, a pair of hospitals (hf , hm), and a

matching µ, we say ((hf , hm), c) blocks µ if c is interested in (hf , hm) at µ,

and

(i) if hx 6= hy and µ(x) 6= hx for all x ∈ {f,m}, then hf is interested in f

and hm is interested in m,

(ii) if hx 6= hy and hx = µ(x) and hy 6= µ(y) for x, y ∈ {f,m}, then hy is

interested in y,

(iii) if hf = hm = h, then h is interested in {f,m}.

It is worth mentioning that the blocking notion takes complementarity of

a couple being accepted into account (by allowing the notion of a hospital

being interested in a couple) but it does not take the couple into account

when accepting single doctors and possibly removing members of a couple.

In other words, there is an asymmetry here.
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We consider this asymmetry in our model since it is not practical for big

institutions like hospitals to consider the possibility of losing a member of

a couple while removing the other member. This is because this possibility

depends on factors like which hospital the removed member will join, whether

the couple prefers to be together in that hospital, etc. Clearly, such situations

can only be modeled by using a farsighted notion of blocking, which would

complicate the model considerably.

Definition 8 A matching µ is stable if it can not be blocked.

Remark 1 By our assumption that each hospital �nds each doctor accept-

able and each doctor �nds each hospital acceptable, every stable matching is

individually rational.

Remark 2 To ease the presentation, for some couple c = {f,m} ∈ C and

hospitals hf , hm ∈ H, whenever a matching µ is blocked by ((hf , hm), c) where

one of the members x ∈ {f,m} of the couple was already in the corresponding

hospital hx (that is, hx = µ(x)), we simply say that µ is blocked by the other

pair (hy, y); y 6= x ∈ {f,m}.

2.4 Two well-known algorithms

In this section, we present a well-known algorithm called doctor proposing

deferred acceptance algorithm (DPDA).5 However, for our purpose, we mod-

ify this algorithm slightly. We use this modi�ed algorithm to match hospitals

with doctors. In what follows, we give a short description of DPDA, where

each doctor d has a preference Pd over hospitals and each hospital h has a

preference Ph over feasible sets of doctors.

DPDA: This algorithm has multiple stages. In stage 1, each doctor d ∈ D
proposes to his/her most preferred hospital according Pd. Each hospital

h ∈ H provisionally accepts the most preferred collection of doctors according

5This directly follows from the well known algorithm given by Gale and Shapley[3].
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to Ph. If a hospital h receives more than κh proposals, then it keeps its

most preferred κh many doctors from these proposals and rejects all others.

Having de�ned stages 1, . . . , k, the stage k+1 is de�ned in the following way:

Each unmatched (till stage k) doctor d proposes to his/her most preferred

hospital from the remaining set of hospitals who have not rejected him/her

in any of the earlier stages. If a hospital, whose provisional list of accepted

doctors is less than its capacity, receives one or more fresh proposal, then

it continues to add to its accepted list (till its capacity). However, if a

hospital h, whose provisional list of doctors is equal to its capacity, receives

one or more fresh proposal from more preferred doctors, then it accepts these

fresh proposals by rejecting same number of relatively worse (according to

Ph) doctors that it provisionally accepted earlier. The algorithm �nally

terminates when each doctor is either matched with some hospital or has

been rejected by all hospitals.

Remark 3 In DPDA, each individual doctor proposes according to his/her

individual preference. Therefore, couples do not play any role in it.

Now, we present another well-known algorithm called serial dictatorship

algorithm (SDA). We give a short description of SDA where hospitals' pref-

erences satisfy CPI with respect to P 0
hp. Recall that unless otherwise men-

tioned, we assume that hospitals' preferences satisfy CPI property. That is,

they have a common ranking, denoted by P 0
hp, over individual doctors.

SDA: In SDA, the highest-ranked doctor according to P 0
hp chooses his/her

most-preferred hospital, and in general, the j-th ranked doctor according

to P 0
hp chooses his/her most preferred hospital among the hospitals with

available vacancy after all the better (with rank less than j) doctors have

made their choices.

Our next remark is a standard result in matching theory.

Remark 4 Both DPDA and SDA produce the same matching when hospi-

tals' preferences satisfy CPI.
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3 Stability is not guaranteed under RVT

In this section, we explore the possibility of having a stable matching when

couples' preferences satisfy RVT property, that is, they are allowed to violate

responsiveness in order to be together. First, we show by the means of an

example that, even when hospitals' preferences satisfy CPI, a stable matching

is not guaranteed in such situations.

Example 1 Suppose there are two hospitals each having capacity 2, two

single doctors, and two other non-single doctors forming a couple. Formally,

suppose H = {h1, h2}, κh1 = κh2 = 2, and D = {s1, s2, f,m} where c =

{f,m} is the only couple. Consider the preference pro�le given in Table 1.

Here, both hospitals have a common preference over individual doctors which

is denoted by P 0
hp.

We do not present the preferences of hospitals over feasible sets of doctors

because that does not play any role in this example.

P 0
hp Ps1 Ps2 Pf Pm Pc

f h2 h1 h2 h1 (h1, h1)

s1 h1 h2 h1 h2 (h2, h1)

s2 (h2, h2)

m (h1, h2)

Table 1

Note that the couple's preference violates responsiveness in order to be

together at h1 since the pair (h1, h1) is preferred to the pair (h2, h1) in its

preference.

Now we show that there does not exist a stable matching at the given

preference pro�le. Suppose on the contrary that µ is a stable matching at

this pro�le. Since the couple prefers to be matched to any pair of hospitals

than having a member unmatched, it follows that both the members of the

couple must be matched with some hospitals at the matching µ. We consider
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all such allocations of the couple c, and show that blocking happens for each

of these allocations.

(i) Suppose µ(c) = (h1, h1).

Since h1Ps2h2 and s2P
0
hpm, (h1, s2) blocks µ.

(ii) Suppose µ(c) = (h2, h1).

Because h2Ps1h1 and s1P
0
hps2P

0
hpm, it must be that µ(s1) = h2. More-

over, by responsiveness, {f,m}Ph1{s2,m}. This, together with the fact

that (h1, h1)Pc(h2, h1), implies ((h1, h1), c) blocks µ.

(iii) Suppose µ(c) = (h2, h2).

Since h2Ps1h1 and s1P
0
hpm, (h2, s1) blocks µ.

(iv) Suppose µ(c) = (h1, h2).

Because h2Ps1h1 and s1P
0
hps2P

0
hpm, we have µ(s1) = h2. Moreover,

by responsiveness {f,m}Ph2{s1,m}. This, together with the fact that

(h2, h2)Pc(h1, h2), implies ((h2, h2), c) blocks µ.

Since Cases (i)-(iv) are exhaustive, it follows that there does not exist a

stable matching at the preference pro�le given in Table 1.

4 Existence of stable matchings when couples'

preferences satisfy RVT

In view of the fact that existence of stable matchings is not guaranteed when

couples are allowed to violate responsiveness for togetherness, we search for

additional conditions on couples' preferences so that the said existence is

guaranteed.

Let P 0
C = ({P 0

d }d∈D\S, {P 0
c }c∈C) be a given collection of preferences of

non-single doctors (that is, the doctors in D \ S) and couples such that for

all c ∈ C, P 0
c satis�es RVT. Given such a collection of preferences P 0

C , an

extension of P 0
C refers to any preference pro�le where (i) the preferences of
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non-single doctors and couples are as given in P 0
C , and (ii) hospitals' pref-

erences satisfy CPI with respect to some preference P 0
hp over the individual

doctors.

Recall that whenever hospitals' preferences over feasible sets of doctors

satisfy CPI with respect to some preference P 0
hp over individual doctors, we

assume that fiP 0
hpmi for each couple {fi,mi}.

In what follows, we present a condition, called responsive for F (RF)

property, that we use in describing situations where stable matchings exist.

The RF property implies that couples' preferences are always responsive with

respect to f . More precisely, if a couple moves together to a hospital from

a pair of hospitals, then it must be that the f -member of the couple prefers

that hospital to the hospital that he/she was originally matched with. In

other words, compromise is always made by m in order for a couple {f,m}
to be together at some hospital.

It is worth emphasizing that the RF property is nothing particular about

the female members of couples. This property basically means that the

responsiveness can only be violated disfavoring the lesser preferred member of

a couple. Since responsiveness is satis�ed for the more preferred member of a

couple, who we refer to as the female member, we use the term responsiveness

for F .

Definition 9 A collection of preferences P 0
C is said to satisfy the Respon-

sive for F (RF) property if for all c = {f,m} ∈ C and all h, h′ ∈ H,

(h, h)P 0
c (h′, h) implies hP 0

f h
′.

Now, we present our �rst theorem which provides a necessary and suf-

�cient condition for the existence of stable matchings at every possible ex-

tension of a given collection of preferences P 0
C . In particular, it says that a

stable matching exists at every possible extension of P 0
C if and only if P 0

C

satis�es the RF property. In the interest of readability, we present the if part

and the only if part of this theorem separately.
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Theorem 1 (i) If P 0
C satis�es the RF property, then a stable matching ex-

ists at every extension of P 0
C.

(ii) If P 0
C does not satisfy the RF property, then there always exists an ex-

tension of P 0
C at which there is no stable matching.

The proof of this theorem is relegated to Appendix.

5 Existence of stable matchings when couples'

preferences are unrestricted

In Section 4, we have considered the case where couples violate responsiveness

for being matched together at some hospital and have provided a necessary

and su�cient condition for the existence of stable matchings. In this section,

we go beyond RVT and consider arbitrary violation of responsiveness of cou-

ples' preferences. In other words, we assume that a couple can have any

preference over pairs of hospitals irrespective of the individual preferences of

its members. Note that in our model a couple need not be a wife-husband

pair, it only represents a pair of doctors who have a joint preference. For

instance, we might have two jealous/competitive people who prefer to stay

apart, and therefore have a joint preference. This justi�es our consideration

of arbitrary couples' preferences.

The existence of a stable matching cannot be anymore guaranteed in this

setting in general. However, as we show, it can be assured by strengthening

the CPI property of hospitals' preferences.

In what follows, we introduce the notion of strong CPI and show that it

is both necessary and su�cient for the existence of a stable matching in this

setting. First, we provide a verbal description of this property. Suppose that

hospitals' preferences satisfy CPI with respect to P 0
hp. Roughly speaking,

strong CPI ensures that the members of each couple are ranked `very close'

to each other. More precisely, it says that (i) if the m-member of a couple is

not the worst doctor of D according to P 0
hp and if there are enough doctors
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in D to �ll (or exceed) the capacity of at least one hospital, then, in fact, the

members of that couple must be ranked consecutively in P 0
hp, (ii) otherwise,

there can be at most one doctor ranked in-between the members of the couple.

Below, we provide the formal de�nition of this.

Recall that whenever hospitals' preferences are assumed to satisfy CPI

with respect to some P 0
hp, we assume fP 0

hpm for any couple {f,m}. Also,

recall that we write r(d, P 0
hp) = k to mean that d has rank k in P 0

hp, that is,

rk(P
0
hp) = d.

Definition 10 Let a collection of hospitals' preferences satisfy CPI with

respect to P 0
hp. Then, the collection of preferences is said to satisfy strong

CPI (SCPI) if for any couple c = {f,m} ∈ C,

(i) r(m,P 0
hp) 6= |D| implies either |{d ∈ D : fP 0

hpdP
0
hpm}| = 0 or |{d ∈ D :

dP 0
hpm}| < κh for all h ∈ H, and

(ii) r(m,P 0
hp) = |D| implies |{d ∈ D : fP 0

hpdP
0
hpm}| ≤ 1.

A preference Pc of a couple c ∈ C is unrestricted if it is an arbitrary

element of L(H̄2) satisfying the only requirement that the couple prefers

both its members to be matched to some hospital rather than having at least

one member unmatched.

Suppose that hospitals' preferences satisfy CPI with respect to some pref-

erence P 0
hp over the individual doctors. We introduce the notion of extension

of this preference P 0
hp to preference pro�les. As the name suggests, an ex-

tension of P 0
hp to a preference pro�le is basically a preference pro�le where

hospitals satisfy CPI with respect to P 0
hp. By an RVT extension of P 0

hp, we

refer to any preference pro�le where couples' preferences satisfy RVT, and

by an unrestricted extension of P 0
hp, we refer any preference pro�le where

the couples' preferences are unrestricted. Of course, in both these extensions

hospitals' preferences satisfy CPI with respect to P 0
hp.

Our next theorem provides a su�cient condition for the existence of a

stable matching at every unrestricted extension of hospitals' preferences sat-

isfying CPI.
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Theorem 2 Let hospitals' preferences satisfy CPI with respect to P 0
hp. If P

0
hp

satis�es SCPI, then a stable matching exists at every unrestricted extension

of P 0
hp.

The proof of this theorem is relegated to Appendix 7.

Now, we look at the converse of Theorem 2. It states the following:

If hospitals' preferences satisfy CPI but violates SCPI, then there always

exists an unrestricted extension of P 0
hp at which there is no stable matching.

However, we prove a stronger version of this converse, where we show that

when hospitals' preferences satisfy CPI but violates SCPI, one can �nd even

an RVT extension of P 0
hp where there is no stable matching. Thus, under the

said assumption, one does not have to look for an unrestricted extension to

get hold of a pro�le with no stable matching.

Theorem 3 Let hospitals' preferences satisfy CPI with respect to P 0
hp. If

P 0
hp does not satisfy SCPI, then there always exists an RVT extension of P 0

hp

at which there is no stable matching.

The proof of this theorem is relegated to Appendix 7.

The following corollary is immediate from Theorem 2 and (the stronger

version of) Theorem 3.

Corollary 1 Let hospitals' preferences satisfy CPI with respect to P 0
hp.

Then a stable matching is guaranteed at every unrestricted extension of P 0
hp

if and only if P 0
hp satis�es SCPI.

6 Matching market with non-identical hospital

preferences

In both Section 4 and Section 5, we have assumed that hospitals have iden-

tical preferences over the doctors. In this section, we relax this assumption

and investigate the existence of stable matchings.
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It is evident from Example 1 that a stable matching cannot be guaranteed

in this setting unless we impose some additional conditions. One natural

candidate for this is the RF property of couples' preferences. However, as

we show in Example 2, that this property itself is not enough to ensure the

existence of a stable matching at every pro�le.

Recall that a collection of preferences P 0
C satis�es the RF property if for

all c = {f,m} ∈ C and all h, h′ ∈ H, (h, h)P 0
c (h′, h) implies hP 0

f h
′.

Example 2 Consider the matching problem where H = {h1, h2, h3} with

κh1 = κh2 = κh3 = 2, D = {f,m, s1, s2, s3, s4}, and there is exactly one

couple c = {f,m} in C. The preferences of hospitals over individual doctors
and those of individual doctors and couple are given in Table 1.

Ph1 Ph2 Ph3 Ps1 Ps2 Ps3 Ps4 Pf Pm Pc

s3 s4 s3 h2 h3 h1 h2 h1 h2 (h1, h2)

s4 s3 s4 h1 h1 h2 h1 h3 h1 (h1, h1)

s1 f m h3 h2 h3 h3 h2 h3 (h1, h3)

f m f (h3, h3)

m s1 s1 (h3, h2)

s2 s2 s2 (h3, h1)

(h2, h2)

(h2, h1)

(h2, h3)

Table 2

We show that there is no stable matching at this preference pro�le. As-

sume for contradiction that µ is a stable matching at that pro�le. Since µ is

stable, r1(Ps3) = h1 and r1(Ph1) = s3 imply µ(s3) = h1. Using similar logic,

stability of µ implies µ(s4) = h2. Moreover, because s1Phs2 for all h ∈ H,

we must have µ(s1)Rs1µ(s2). Now, we consider all possible cases of couples'

matching satisfying the above criteria and show that µ is blocked in each of

those cases.
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• Suppose µ(c) = (h1, h2). Since h1Ps1h3 and s1Ph1f , µ is blocked by

(h1, s1).

• Suppose µ(c) = (h1, h3). Since (h1, h2)Pc(h1, h3) and mPh2s1, µ is

blocked by ((h1, h2), c).

• Suppose µ(c) = (h3, h3). Since (h1, h2)Pc(h3, h3), mPh2s1, and fPh1s2,

µ is blocked by ((h1, h2), c).

• Suppose µ(c) = (h3, h) for some h ∈ {h1, h2}. Since (h3, h3)Pc(h3, h)

and mPh3s2, µ is blocked by ((h3, h3), c).

• Suppose µ(c) = (h2, h1). Since h1Ps1h3 and s1Ph1m, µ is blocked by

(h1, s1).

• Suppose µ(c) = (h2, h3). Since (h3, h3)Pc(h2, h3) and fPh3s2, µ is

blocked by ((h3, h3), c).

Therefore, there is no stable matching at the preference pro�le given in

Table 2.

In view of Example 2 we consider another property, namely the common

preference over couple members property, to ensure the existence of a stable

matching. As the name suggests, this property says that all hospitals have

the same relative ranking over the members of each couple. Following our

nomenclature, we assume that the common �better member� of each couple

is the F -member and present this property by requiring that every hospital

prefers the F -member of a couple to the M -member. Below, we provide a

formal de�nition.

Definition 11 A collection of preferences PH = {Ph}h∈H of hospitals is

said to satisfy the common preference over couple members (CPC) property

if fPhm for all c = {f,m} ∈ C and all h ∈ H.

Now we show in Example 3, that even the RF property and the CPC

property together are not su�cient to ensure stable matchings.
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Example 3 In this example, we show that if a preference pro�le satis�es

CPC, then there exists a preference extension with no stable matching even

when the couples' preferences satisfy the RF property. Consider the matching

problem where the set of hospitals, their capacities, and the set of doctors are

as given in Example 2. The preferences of hospitals over individual doctors

and those of individual doctors and the couple are given in Table 3. Note

that hospitals' preferences satisfy CPC and the couples preferences satisfy

responsiveness for F property.

Ph1 Ph2 Ph3 Ps1 Ps2 Ps3 Ps4 Pf Pm Pc

s3 s4 s3 h2 h3 h1 h2 h1 h2 (h1, h2)

s4 s3 s4 h1 h1 h2 h1 h3 h1 (h1, h1)

s1 f f h3 h2 h3 h3 h2 h3 (h1, h3)

f m m (h3, h3)

m s1 s1 (h3, h2)

s2 s2 s2 (h3, h1)

(h2, h2)

(h2, h1)

(h2, h3)

Table 3

The proof of the fact that there is no stable matching at the preference

pro�le in Table 2 is similar to that in Example 2, and hence is omitted.

It follows from Example 3 that a stable matching does not exist at every

preference pro�le even when we impose both the RF property for couples'

preferences and the CPC property for hospitals' preferences, and further

restrict that no doctor is ranked between two members of a couple for each

of the hospitals. In what follows, we proceed to strengthen both the RF

property and the CPC property to ensure the existence of a stable matching.

Remark 5 Throughout this section we assume that couples' preferences sat-

isfy the RF property and hospitals' preferences satisfy the CPC property.
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6.1 Condition on Couples' Preferences

In view of this, we further strengthen the RF property of couples' preferences

by putting a restriction on the preferences of couples. We call this property

Strong Responsive for F (SRF). A verbal description of this property is given

below, which is followed by a formal de�nition.

Let P 0
C = ({P 0

d }d∈D\S, {P 0
C}c∈C) be a given collection of preferences of

non-single doctors (that is, the doctors in D \ S) and couples such that

for all c ∈ C, P 0
c satis�es the RF property. Given such a collection of

preferences P 0
C , an extension of P 0

C refers to any preference pro�le where (i)

the preferences of non-single doctors and couples are given as P 0
C , and (ii)

hospitals' preferences satisfy the CPC property.

In what follows, we present a condition, called the Strong Responsive for

F (SRF) property, that we use in describing situations where stable match-

ings exist. The SRF property says the following. Consider a c = {f,m} ∈ C.
Then P 0

c satis�es the SRF property if the following happens: for all hospitals

h and h′ in H, with h not being the top ranked hospital of f , if the couple

prefers (h, h) to (h, h′) and m prefers h′ to h, then f prefers h′ to h as well ac-

cording to her individual preference. In other words, this property says that

if m has to violate responsiveness to be together with f at hospital h, then

this violation has to occur at the hospital which is preferred to h according

to P 0
f . Now, we provide the formal de�nition below.

Definition 12 A collection of preferences P 0
C satisfying the RF property is

said to satisfy the Strong RF (SRF) property if for all c = {f,m} ∈ C and

all h, h′ ∈ H such that r1(P
0
f ) 6= h, (h, h)P 0

c (h, h′) and h′P 0
mh implies h′P 0

f h.

The following lemma says that the SRF property is the same as the RF

property if there are only two hospitals.

Lemma 1 Suppose |H| = 2. Then, a collection of preferences P 0
C of the

couples satis�es the SRF property if and only if it satis�es the RF property.

Proof : By the de�nition of the SRF property, if P 0
C satis�es the SRF prop-

erty, then it satis�es the RF property. We prove the converse when there are
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two hospitals. Suppose H = {h1, h2}, and assume for contradiction that the

preference P 0
c of a couple c satis�es the RF property but violates the SRF

property. Without loss of generality, let us assume that (h1, h1)P
0
c (h1, h2),

h2P
0
mh1, and h1P

0
f h2. However, since the number of hospitals is 2, h1P 0

f h2

implies r1(P 0
f ) = h1, which is a contradiction to our assumption that the

SRF is violated for P 0
c . �

Now we present our theorem, which provides a necessary and su�cient

condition for the existence of a stable matching at every possible extension

of a given collection of preferences P 0
C . In particular, it says that a stable

matching exists at every possible extension of P 0
C if and only if P 0

C satis�es

the SRF property.

Theorem 4 (i) If P 0
C satis�es the SRF property, then a stable matching

exists at every extension of P 0
C.

(ii) If P 0
C does not satisfy the SRF property, then there always exists an

extension of P 0
C at which there is no stable matching.

The proof of this theorem is relegated to Appendix.

6.2 Condition on Hospitals' preferences

Now, we further strengthen the CPC property of hospitals' preferences by

putting a restriction on their preferences. We call this property Strong Com-

mon Preference over Couples (SCPC). A verbal description of this property

is given below, which is followed by a formal de�nition.

Let P 0
H = ({P 0

h}h∈H) be a given collection of preferences of hospitals, P 0
h

satis�es the CPC property. Given such a collection of preferences P 0
H , an

extension of P 0
H refers to any preference pro�le where (i) the preferences of

couples satisfy the RF property, and (ii) hospitals' preferences are given in

P 0
H .

In what follows, we present a condition, called Strong Common Preference

over Couples (SCPC) property, that we use in describing situations where
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stable matchings exist. The SCPC property says that for each hospital and

for any couple c ∈ C, the set of doctors who are preferred to its female mem-

ber (that is, the more preferred member) remains the same for all hospitals.

We now provide a formal de�nition of this property.

Definition 13 A collection of CPC preferences P 0
H satis�es the Strong Com-

mon Preferences over Couples (SCPC) property if for all h, h′ ∈ H, all

c = {f,m} ∈ C, and all d ∈ D, we have dP 0
hf if and only if dP 0

h′f .

Our next theorem says that the SCPC property is a su�cient condition

on hospitals' preferences to guarantee the existence of a stable matching at

its preference extension of P 0
H where the couples' preferences satisfy the RF

property.

Theorem 5 If a collection of preferences of hospitals P 0
H satis�es the SCPC

property, then a stable matching exists at its every preference extension of

P 0
H .

7 Conclusion

In this paper, we have considered many-to-one matching problems between

doctors and hospitals where doctors consist of some couples. First, we have

considered the case where hospitals have a common preference over the in-

dividual doctors. We have shown that when a couple is allowed to violate

responsiveness only for togetherness, a stable matching exists at every pref-

erence pro�le if and only if the lesser preferred member (according to the

common preference of the hospitals) of the couple is ready to violate re-

sponsiveness to be together with the more preferred member. We have fur-

ther provided necessary and su�cient conditions for the existence of a stable

matching at every preference pro�le when a couple is allowed to violate re-

sponsiveness arbitrarily.

Next, we have considered the case where hospitals need not have a com-

mon preference over individual doctors. We have shown that under the com-
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mon preference over couples' property of the hosptials, a stable matching

exists if and only if the couples' preferences satisfy the SRF property. More-

over, we have further shown that if hospitals' preferences satisfy Strong CPC

condition, then a stable matching always exists, when the couples' prefer-

ences satisfy the RF property.

An interesting open problem would be to consider the situation where (i)

hospitals are partitioned based on geographical regions (that is, hospitals in

the same geographical region are in one partition) and (ii) couples' prefer-

ences violate responsiveness in order for them to be employed at hospitals

that are located in the same region. It follows from Theorem 2 that a sta-

ble matching will exist in this setting if hospitals preferences satisfy SCPI.

However, SCPI need not be a necessary condition for the said existence. We

leave the problem of �nding the exact necessary and su�cient condition for

the existence of a stable matching for future research.

Appendix: Remaining proofs

Proof of Theorem 1

Proof :[Part (i)] The proof of this part is constructive. Suppose P 0
C satis-

�es the RF property. We show that every extension P˜ of P 0
C has a stable

matching.

Take an extension P˜ of P 0
C .

Recall that by our initial assumption on CPI, miP
0
hpmj for all i, j ∈

{1, . . . , k} such that i < j. In the following, we present an algorithm that

produces a stable matching at P˜ .
Algorithm 1: This algorithm involves k+ 1 steps. We present the 1st step

and a general step of the algorithm.

Step 1: Use SDA to match all the doctors ranked above m1 according to

P 0
hp. Suppose f1 is matched to some hospital h1. Then, match m1 using SDA
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where m1 proposes according to the preference P 0
m1|h1 .

...

Step j: Having matched all the doctors from the top till mj−1 according to

P 0
hp in steps 1 to j − 1, use SDA to match all doctors ranked below mj−1

and above mj according to P 0
hp. Suppose fj is matched to some hospital

hj. Then, match mj by SDA where mj proposes according to the preference

P 0
mj |hj .

...

Continue this process till Step k and then match the remaining single doctors

by SDA in step k + 1.

Let µ be the outcome of Algorithm 1. We show that µ is stable at P˜ .
First, we show that µ cannot be blocked by (h, s) for some h ∈ H and

s ∈ S. Assume for contradiction that some pair (h, s) blocks µ. By the

nature of Algorithm 1, all doctors who propose before s are ranked above s

in P 0
hp. Since s /∈ µ(h), this means either µ(s)P˜ sh or dP 0

hps for all d ∈ µ(h)

and |µ(h)| = κh. Clearly, if µ(s)P˜ sh then s does not block with h. On the

other hand, if dP 0
hps for all d ∈ µ(h) and |µ(h)| = κh, then by responsiveness

of hospitals' preferences, we have µ(h)P˜h((µ(h) \ d) ∪ s) for all d ∈ µ(h).

Therefore, h does not block with s. This proves that µ can not by blocked a

hospital and a single doctor.

Now, we show that µ cannot be blocked by ((h1, h2), c) for some h1, h2 ∈
H and c ∈ C. Assume for contradiction that some ((h1, h2), c) blocks µ. Let

c = {f,m}. We complete the proof in two steps.

Step 1: In this step, we show that if ((h1, h2), c) blocks µ, then ((µ(f), h2), c)

also blocks µ. Clearly, if µ(f) = h1, then there is nothing to show. So,

suppose µ(f) 6= h1.

First, we claim µ(f)P 0
f h1. Assume for contradiction that h1P 0

f µ(f). Since

f proposes according to P 0
f and all the doctors who propose before f are
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ranked above f in P 0
hp, f /∈ µ(h1) implies that dP 0

hpf for all d ∈ µ(h1)

and |µ(h1)| = κh1 . By responsiveness of hospitals' preferences, this means

µ(h1)P˜h1((µ(h1) \ d) ∪ f) for all d ∈ µ(h1). However, this contradicts that

((h1, h2), c) blocks µ. Therefore, µ(f)P 0
f h1.

Next, we show that (µ(f), h2)P
0
c (h1, h2). Assume for contradiction that

(h1, h2)P
0
c (µ(f), h2). If h1 6= h2, then RVT implies h1P 0

f µ(f), which is a

contradiction. On the other hand, if h1 = h2, then by the RF property

implies h1P 0
f µ(f), which is a contradiction.

Now, we complete Step 1. Since ((h1, h2), c) blocks µ, it must be that

((µ(h2) \ d) ∪m)P̃h2µ(h2) for some d ∈ µ(h2). Because (µ(f), h2)P
0
c (h1, h2),

it follows that ((µ(f), h2), c) blocks µ.

Step 2: In this step, we show that ((µ(f), h2), c) cannot block µ.

Suppose µ(f) = h. Because (µ(f), h2)P
0
c (µ(f), µ(m)), the de�nition of

P 0
m|h implies h2P 0

m|hµ(m). Since all doctors who propose before m are ranked

above m in P 0
hp and m /∈ µ(h2), it must be that dP 0

hpm for all d ∈ µ(h2)

and |µ(h2)| = κh2 . By responsiveness of hospitals' preferences, this means

µ(h2)P˜h2((µ(h2) \ d) ∪m) for all d ∈ µ(h2). However, this contradicts that

((µ(f), h2), c) blocks µ.

This completes the �rst part of the theorem.

[Part (ii)] Suppose P 0
C does not satisfy the RF property. We show that there

is an extension of P 0
C with no stable matching. Since P 0

C does not satisfy

the RF property, there must exist a couple c = {f,m} and two hospitals

h1, h2 ∈ H such that (h1, h1)P
0
c (h2, h1) and h2P 0

f h1. Moreover, since h2P 0
f h1,

it follows from the de�nition of RVT that (h2, h2)P
0
c (h1, h2).

Consider a pro�le P˜ such that

1. there are doctors d1, d2 ∈ D \ {f,m} with fP 0
hpd1P

0
hpd2P

0
hpm such that

r1(P˜d1) = h1 and r1(P˜d2) = h2,

2. |{d : dP 0
hpf and r1(P˜d) = h2}| = κh2 − 2, |{d : dP 0

hpf and r1(P˜d) =

h1}| = κh1−2, and |{d : dP 0
hpf and r1(P˜d) = h}| = κh for all h 6= h1, h2,

and
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3. the preferences of all couples other than c satisfy responsiveness.

Since
∑

h∈H κh = |D| by the construction of P˜ , the four bottom-ranked

(lowest ranked) doctors in P 0
hp are f, d1, d2,m. We show that there is no

stable matching at P˜ . Assume for contradiction that a matching µ is stable

matching at P˜ . Since µ is stable at P˜ , by the construction P˜ , it is straight
forward that µ(d) = r1(P˜d) for all dP 0

hpf .

Because |{d : dP 0
hpf and r1(P˜d) = h}| = κh for all h 6= h1, h2, stability

of µ implies that the doctors f, d1, d2,m cannot be matched to any hospital

other than h1 and h2. Moreover, since |{d : dP 0
hpf and r1(P˜d) = h2}| =

κh2 − 2 and |{d : dP 0
hpf and r1(P˜d) = h1}| = κh1 − 2, exactly two doctors

among f, d1, d2,m must be matched to each of h1 and h2.

Now, we distinguish the following cases depending on the allocation of

the couple c and show that µ is not stable in any of these cases.

• Suppose µ(c) = (h2, h2).

Then, (h2, d2) blocks µ as r1(P˜d2) = h2 and d2P 0
hpm.

• Suppose µ(c) = (h1, h2).

Then, ((h2, h2), c) blocks µ as fP 0
hpd1P

0
hpd2, and by the de�nition of

RVT (h2, h2)P
0
c (h1, h2).

• Suppose µ(c) = (h1, h1).

Then, (h1, d1) blocks µ as r1(P˜d1) = h1 and d1P 0
hpm.

• Suppose µ(c) = (h2, h1).

Then, ((h1, h1), c) blocks µ as fP 0
hpd1P

0
hpd2, and by the initial assump-

tion, (h1, h1)P
0
c (h2, h1).

This completes the proof. �
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Proof of Theorem 2

Proof :Suppose P 0
hp satis�es SCPI. We show that there exists a stable match-

ing for every unrestricted extension P˜ of P 0
hp. Let us partition the set of

couples C into two subsets C1 and C2 such that for all c = {f,m} ∈ C1,

|{d ∈ D : dP 0
hpm}| < κh, and for all c = {f,m} ∈ C2, |{d ∈ D :

dP 0
hpm}| ≥ κh. Let us index the couples in C2 as {f 1,m1}, . . . {f l,ml} where

miP 0
hpm

j for all i, j ∈ {1, . . . , l} with i < j. Since P 0
hp satis�es SCPI and

|{d ∈ D : dP 0
hpm}| ≥ κh for all c = {f,m} ∈ C2, this implies f iP 0

hpf
j for

all i, j ∈ {1, . . . , l} with i < j. In the following, we present an algorithm

that produces a stable matching at P˜ . Clearly, by construction, for any

c = {f,m} ∈ C1 and c′ = {f ′,m′} ∈ C2, we have mP 0
hpf
′.

Algorithm 2: We present the 1st step and a general step of the algorithm.

Step 1: Use SDA to match all the doctors who are ranked above f 1 accord-

ing to P 0
hp in the following manner. All the single doctors s ∈ S propose

according to P˜ s. For any couple c = {f,m} ∈ C1, f proposes according

to her conditional preference in P̃c. More formally, f �rst proposes to the

hospital hf such that (hf , hm) appears at the top position of P̃c for some hos-

pital hm. If f is rejected by hf , she proposes to the hospital h′f that appears

after hf in the f -component of the preference P̃c. In other words, h′f is such

that there is no hospital h′′f other than hf such that (h′′f , h
′′
m) appears above

(h′f , h
′
m) for some h′m and h′′m according to the preference P̃c. f continues to

propose this way till she is matched. Once f is matched with some hospital

h, m starts proposing to the hospitals according to the preference P̃m|h till he

is matched. Once all the doctors who are ranked above f 1 are matched, c1

proposes to the hospitals according to the preference P˜ c1 till both members

of c1 get matched. More formally, c1 �rst proposes to r1(P˜ c1), and if any

member of the couple is rejected, then it proposes to r2(P˜ c1), and so on until

both members of the couple are accepted by the corresponding hospitals.

...

Step j: Having matched all the doctors from the top till mj−1 in P 0
hp in steps
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1 to j−1, use SDA to match all the doctors that ranked belowmj−1 and above

rj according to P 0
hp. Note that for j > 1, there is no couple c = {f,m} ∈ C1

such that f or m is ranked below mj−1 and above f j according to P 0
hp. For

the couple, cj proposes according to the preference P˜ cj till both of them are

accepted by the corresponding hospitals. That is, cj �rst proposes to r1(P˜ cj),
and if at least one member of the couple is rejected, then they propose to

r2(P˜ cj), and so on, till both of them are accepted.

...

Continue this process till Step l−1. Having matched all the doctors from the

top till ml−1 according to P 0
hp matched in steps 1 to l− 1, use SDA to match

all the doctors that are ranked below ml−1 and above f l according to P 0
hp.

We distinguish the following two cases to match remaining doctors. Note

here, that the remaining doctors now include f l and all the doctors ranked

below f l.

Case 1. Suppose there is no single doctor in between f l and ml in P 0
hp for

all h ∈ H. Let cl propose to r1(P˜ ck). If at least one member of the couple is

rejected, then let cl propose to r2(P˜ cl), and so on. Continue this process till

both members of the couple are accepted. Finally, match all the remaining

doctors using SDA.

Case 2. Suppose there is a single doctor, say s′, in between f l and ml in

P 0
hp. Note that by SCPI, there cannot be more than one single doctor in

between f l and ml. Suppose H ′ is the set of hospitals that have at least

one remaining vacancy. Let h′ be the worst hospital in H ′ according to P˜ s′
and let h ∈ H ′ be such that (h, h′)R˜ cl(h′′, h′) for all h′′ ∈ H ′. Match cl with

(h, h′) and s′ to the hospital that has a remaining vacancy.

Let µ be the outcome of Algorithm 2. We show that µ is stable at P˜ .
Assume for contradiction that µ is blocked by a hospital and a single doc-

tor or a pair of hospitals and a couple. We complete the proof by considering

the two cases of Algorithm 2 separately.

Case 1. Suppose Case 1 of Algorithm 2 holds.
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First, we show that µ cannot be blocked by (h, s) for some h ∈ H and

s ∈ S. Assume for contradiction that some pair (h, s) blocks µ. By the

nature of Algorithm 2, all the doctors who propose before s are ranked above

s according to the SCPI P 0
hp. Moreover, for any c = {f,m} ∈ C2, if fP 0

hps,

then by SCPI, mP 0
hps. Since s /∈ µ(h), by the nature of Algorithm 2, we have

either µ(s)P˜ sh or dP 0
hps for all d ∈ µ(h) and |µ(h)| = κh. Clearly, if µ(s)P˜ sh

then s does not block with hospital h. On the other hand, if dP 0
hps for all

d ∈ µ(h) and |µ(h)| = κh, then by responsiveness of hospitals' preferences,

we have µ(h)P˜h(µ(h) \ d)∪ s for all d ∈ µ(h). Therefore, hospital h does not

block with s. This contradicts that (h, s) blocks µ.

Next we show that µ can not be blocked by ((h1, h2), c) for some h1, h2 ∈
H and c = {f,m} ∈ C. First, we claim c /∈ C1. Note that if each hospital

has enough vacancies to accommodate the couple together with all doctors

who are ranked above it, c would not get rejected by any pair of hospitals

it applies to and thus, it would have been matched to their top ranked pair

of hospitals, which contradicts our assumption that c blocks µ. Therefore,

it must not be the case that |{d ∈ D : dP 0
hpm} < κh for all h, which means

c /∈ C1.

In view of the preceding claim, it follows that if µ is blocked by ((h1, h2), c),

then c ∈ C2. By the nature of Algorithm 2, couple c proposes to (h1, h2) be-

fore proposing to (µ(f), µ(m)), and some hospital, say hi ∈ {h1, h2}, rejects
the corresponding member of the couple c. We distinguish the following two

sub-cases.

Case 1.1. Suppose h1 6= h2. Since hi rejects a doctor from couple c, it must

be that hi has no vacancies when c proposes to (h1, h2). Since c is in C2, we

have that f and m are adjacent in P 0
hp. It follows that all the doctors in µ(hi)

are preferred to both f and m. Therefore, hi will be worse o� by removing a

doctor from µ(hi) and taking a member from the couple c, which contradicts

that ((h1, h2), c) blocks µ.

Case 1.2. Suppose h1 = h2. Because h1 rejects at least one member of c, it

must be that h1 has less than two vacancies when c proposes to (h1, h1). Let
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D′ be the set of doctors that are present in h1 at the time when c makes the

proposal to (h1, h1). By SCPI, the de�nition of C2, and the nature Algorithm

2, this implies that each doctor in D′ is preferred to both the doctors of the

couple c. Again, by Algorithm 2, it follows that D′ ⊆ µ(h1). This means h1
must release some doctors from D′ in order to block with c. Since hospitals'

preferences over sets of individuals satisfy responsiveness, therefore, h1 will

be worse o� by removing two doctors from D′ in order to take the couple.

This contradicts that ((h1, h1), c) blocks µ.

This completes the proof of Theorem 2 for Case 1.

Case 2. Suppose Case 2 of Algorithm 2 holds. Note that after matching all

the doctors from the top till f l in P 0
hp, we have exactly three vacancies left

since
∑

h∈H κh = |D|. Recall from Case 2 of our Algorithm that H ′ is the set

of hospitals with at least one vacancy left, after all the doctors ranked above

f l have been matched.

By similar argument as in Case 1, (i) µ cannot be blocked by (h, s) for

any sP 0
hpf

l, and (ii) µ cannot be blocked by ((h1, h2), c) for any c such that

c 6= cl.

First, we show µ cannot be blocked by (h, s′), where s′ is the unique single

doctor ranked between f l and ml in P 0
hp. Suppose not. Since dP 0

hps
′ for all

d 6= ml, it follows that h ∈ H ′. By Algorithm 2, µ(s′) ∈ H ′ and µ(ml) is the

worst hospital in H ′ according to P˜ s′ . Since µ is blocked by (h, s′), we have

hP˜ s′µ(s′)R˜ s′µ(ml), which implies h 6= µ(ml). We now show that h 6= µ(f l).

Assume for contradiction, h = µ(f l). By our earlier argument, since h 6=
µ(ml), µ(f l) = µ(ml) implies h 6= µ(f l). Suppose µ(f l) 6= µ(ml). This means

all the doctors in µ(f l) are ranked above s′ according to P 0
hp, contradicting

the fact that µ(f l) and s′ block µ. This shows h 6= µ(f l). By the de�nition

of Algorithm 2, h ∈ {µ(s′), µ(f l), µ(ml)}. Since h /∈ {µ(f l), µ(ml)}, it must
be that h = µ(s′), and hence h and s′ can not block.

Now, we show that µ cannot be blocked by ((h1, h2), c
l) for some h1, h2 ∈

H. Since dP 0
hpf

l for all d /∈ {s′,ml}, it follows from Algorithm 2 and the

de�nition of H ′ that h1, h2 ∈ H ′. We complete the proof by distinguishing
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the following two cases.

Case 2.1. Suppose h2 = µ(ml). By Algorithm 2, µ(cl)R˜ cl(h1, h2) for all

h1 ∈ H ′. Therefore, cl will not block with (h1, h2).

Case 2.2. Suppose h2 6= µ(ml). By Algorithm 2, this means all the doctors

in h2 are preferred to ml according to P 0
hp. Therefore, h2 will not block with

ml.

This completes the proof of Theorem 2 for Case 2. Since Case 1 and Case

2 are exhaustive, this completes the proof of Theorem 2. �

Proof of Theorem 3

Proof :Suppose a CPI P 0
hp does not satisfy SCPI. We show that there exists

an RVT extension of P 0
hp with no stable matching. Since P 0

hp does not satisfy

SCPI, one of the following two cases must happen:

Case 1. There is a couple c = {f,m} such that r(m,P 0
hp) 6= |D|, |{d ∈ D :

fP 0
hpdP

0
hpm}| > 0 and |{d ∈ D : dP 0

hpm}| ≥ κh for some h ∈ H. Thus, there

exist doctors d1, d2 such that fP 0
hpd1P

0
hpmP

0
hpd2 and a hospital h1 such that

|{d ∈ D : dP 0
hpm}| ≥ κh1 .

Case 2. There is a couple c = {f,m} such that r(m,P 0
hp) = |D| and

|{d ∈ D : fP 0
hpdP

0
hpm}| > 1. In other words, there exist doctors d1, d2 such

that fP 0
hpd1P

0
hpd2P

0
hpm.

In the following, we present an RVT extension of P 0
hp with no stable

matching for both Case 1 and Case 2.

Take hospitals h1, h2 ∈ H and consider a preference pro�le P˜ such that

1. r1(P˜ f ) = r1(P˜d2) = h2 and r1(P˜m) = r1(P˜d1) = h1,

2. r2(P˜ f ) = r2(P˜d2) = h1 and r2(P˜m) = r2(P˜d1) = h2,

3. (h1, h1)P˜ c(h2, h1) and (h1, h1)P˜ c(h2, h2),
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4. (h1, h2)P˜ c(h, h′) for all h, h′ ∈ H such that (h, h′) does not belong to

the set {(h1, h1), (h2, h2), (h2, h1), (h1, h2)},

5. preference P˜ c satis�es responsiveness for all pairs of hospitals other

than (h1, h1),

6. preferences of all couples other than c satisfy responsiveness,

7. |{d : r1(P˜d) = h1 and dP 0
hpm}| = κh1 − 1, and

8. for all d /∈ {f,m, d1, d2}, |{d : r1(P˜d) = h2}| = κh2 − 2 and |{d :

r1(P˜d) = h}| = κh for all h 6= h1, h2.

Note that the assumption made in condition 7 is possible as |{d ∈ D :

dP 0
hpm}| ≥ κh1 and fP

0
hpm. However, r1(P˜ f ) 6= h1. We show that there is no

stable matching at P˜ for both Case 1 and Case 2. Assume for contradiction

that µ is a stable matching at P˜ . Note that by the construction of P˜ , for
all doctors d such that dP 0

hpf , we must have µ(d) = r1(P˜d). In the following

claim, we show that µ(d) ∈ {h1, h2} for all d ∈ {f,m, d1, d2}.

Claim 1 For all d ∈ {f,m, d1, d2}, µ(d) ∈ {h1, h2}.

Proof : First, we show µ(d) ∈ {h1, h2} for d ∈ {f,m}. Suppose µ(d) = h′ for

some d ∈ {f,m} and some h′ /∈ {h1, h2}. We complete the proof for the case

where µ(m) = h′, the same for the case µ(f) = h′ follows from similar argu-

ments. Let µ(c) = (h, h′) for some h ∈ H. Consider the matchings (h, h1)

and (h, h2) of the couple c. Note that by responsiveness, (h, h1)P˜ c(h, h′) and
(h, h2)P˜ c(h, h′). Further, since

∑
h∈H κh = |D| and µ(d) = r1(P˜d) for all

doctors d such that dP 0
hpm, µ(m) = h′ implies that there must be a doctor

d′ with mP 0
hpd
′ such that either d′ ∈ µ(h1) or d′ ∈ µ(h2).

Suppose not, then points 7. and 8. imply that there exists a doctor

d′′ /∈ {f,m, d1, d2} such that r1(P˜d′′) 6= h1 and d′′ ∈ µ(h1) or r1(P˜d′′) 6= h2

and d′′ ∈ µ(h2). Thus, d′′ can block µ with r1(P˜d). If not, then by a recursive

argument as above, by points 7. and 8.there exists another doctor preferred

to d′′ such that she is in not in her most preferred hospital and is matched
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to r1(P˜d). Continuing like this, we get that there exists a doctor not in

{f,m, d1, d2} such that she is not in her most preferred hospital and can thus

block µ with that hospital.

However, if there exists a doctor d′ with mP 0
hpd
′ such that either d′ ∈

µ(h1) or d′ ∈ µ(h2) then, the couple c blocks µ with either (h, h1) or (h, h2)

contradicting the stability of µ. Therefore, µ(d) ∈ {h1, h2} for all d ∈ {f,m}.
Now, we show µ(d) ∈ {h1, h2} for d ∈ {d1, d2}. Suppose µ(d) = h′ for

some d ∈ {d1, d2} and some h′ /∈ {h1, h2}. Since µ(d) ∈ {h1, h2} for all

d ∈ {f,m} and µ(d) = r1(P˜d) for all doctors d such that dP 0
hpf , there must

be a doctor d′ with d2P 0
hpd
′ such that either d′ ∈ µ(h1) or d′ ∈ µ(h2). Because

rk(P˜d) ∈ {h1, h2} for all k = 1, 2, if µ(d′) = h1, then d blocks µ with h1, and

if µ(d′) = h2, then d blocks µ with h2. This contradicts the stability of µ.

Therefore, µ(d) ∈ {h1, h2} for all d ∈ {d1, d2}.
This completes the proof of Claim 1. �

Now, we distinguish the following cases depending on the allocation of

couple c and show that µ is not stable for each of these cases.

• Suppose µ(c) = (h1, h1).

Since |{d : r1(P˜d) = h1 and dP 0
hpf}| = κh1 − 2 and fP 0

hpd1, thus d1 /∈
µ(h1). Because h1P˜d1h2 and d1P 0

hpm, this means (h1, d1) blocks µ.

• Suppose µ(c) = (h2, h1).

Then, ((h1, h1), c) blocks µ as fP 0
hpd1P

0
hpd2 and (h1, h1)P˜ c(h2, h1).

• Suppose µ(c) = (h2, h2).

By the construction of P˜ , (h1, h1)P˜ c(h2, h2) and h2P˜d2h1. If Case 1

holds, then ((h1, h1), c) blocks µ as fP 0
hpd1 and mP

0
hpd2. On the other

hand, if Case 2 holds, then (h2, d2) blocks µ as d2P 0
hpm.

• Suppose µ(c) = (h1, h2).

Since h2P˜ fh1, by RVT, (h2, h2)P˜ c(h1, h2). This, together with the fact

that fP 0
hpd1P

0
hpd2, means µ is blocked by ((h2, h2), c).
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This completes the proof of Theorem 3. �

Proof of Theorem 4

Proof : [Part (i)] The proof of this part is constructive. Suppose P 0
C satis�es

the SRF property. We show that every extension of P˜ of P 0
C has a stable

matching.

Take an extension P˜ of P 0
C . We present an algorithm which produces a

stable matching at P˜ .
Algorithm 3 : Use DPDA, where at each stage, each single doctor s proposes

according to P˜ s, and for any couple c = {f,m}, f proposes according to P 0
f ,

and m, if not already matched, proposes according to P 0
m|h, where h is the

hospital f proposes to.

Let µ be the outcome of this algorithm. We make a remark that we

repeatedly refer in our proof.

Remark 6 If a doctor d is rejected by some hospital h at some stage of this

algorithm, then (h, d) cannot block µ. This is because, by DPDA, a hospital

only rejects a doctor d if d′P˜hd for all d′ ∈ µ(h).

First, we show that µ cannot be blocked by (h, s) for some h ∈ H and

s ∈ S. Assume for contradiction that some pair (h, s) blocks µ. Since

s /∈ µ(h), this means either µ(s)P˜ sh or s was rejected by h at some stage

of the algorithm. Clearly, if µ(s)P˜ sh then s does not block with h. On the

other hand, if s had proposed to h and was rejected by h at an earlier stage,

then by the above Lemma 6, (h, s) cannot block µ.

Now, we show that µ cannot be blocked by ((h1, h2), c) for some h1, h2 ∈
H and c ∈ C. Assume for contradiction that ((h1, h2), c) blocks µ for some

h1, h2 ∈ H and c ∈ C. We distinguish the following two cases.

Case 1. Suppose µ(f) = r1(P
0
f ) = hf .

First, we show that µ(m) 6= h2. To the contrary, suppose µ(m) = h2.

Then, (h1, h2)P
0
c (hf , h2) implies h1P 0

f hf , which contradicts the fact that hf =
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r1(P
0
f ).

Next, we show that (hf , h2)P
0
c (hf , µ(m)). Since ((h1, h2), c) blocks µ and

µ(f) = hf , (h1, h2)P
0
c (hf , µ(m)). If h1 = hf , there is nothing to prove.

Suppose h1 6= hf . Then, by the responsiveness with respect to f , we have

(hf , h2)P
0
c (h1, h2). Since (h1, h2)P

0
c (hf , µ(m)) and µ(m) 6= h2, this implies

(hf , h2)P
0
c (hf , µ(m)). Since ((h1, h2), c) blocks µ and µ(f) = hf , it follows

that ((hf , h2), c) also blocks µ.

By the de�nition of P 0
m|hf , (hf , h2)P

0
c (hf , µ(m)) implies h2P 0

m|hfµ(m).

Therefore, by the de�nition of Algorithm 3, it must be that m had pro-

posed to h2 and got rejected at an earlier stage of Algorithm 3. Hence, by

the de�nition of DPDA, d′P˜h2m for all d′ ∈ µ(h2). Thus ((hf , h2), c) cannot

block µ. This completes the proof for Case 1.

Case 2. Suppose µ(f) 6= hf .

We �rst prove the following lemma.

Lemma 2 If µ(f) 6= hf , then µ(f)R0
fh1.

Proof : Assume for contradiction that h1P 0
f µ(f). Since by Algorithm 3, f

proposes according to P 0
f , this implies that f had proposed to h1 and got

rejected. By the nature of DPDA, this implies dP˜h1f for all d ∈ µ(h1).

Therefore, ((h1, h2), c) cannot block µ, a contradiction. �

Lemma 3 If h1 = h2 = h, then ((h, h), c) cannot block µ.

Proof : First, we show that hP 0
mµ(m). Suppose not. By the SRF property,

(h, h)P 0
c (µ(f), µ(m)) implies hP 0

f µ(f). Therefore, it must be that f had

proposed to h in DPDA and got rejected, and hence dP˜hf for all d ∈ µ(h).

This contradicts our assumption that ((h, h), c) blocks µ.

From Lemma 2, we know that µ(f)R0
fh. Since the couples' preferences

satisfy responsiveness with respect to f , we have (µ(f), h)R0
c(h, h). Since

((h, h), c) blocks µ, we have (h, h)P 0
c (µ(f), µ(m)). Thus, from the above

argument, we have (µ(f), h)P 0
c (µ(f), µ(m)) which implies hP 0

m|hµ(m). By
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the nature of the algorithm, this implies that m had proposed to h and got

rejected. Thus for all d ∈ µ(h), dP˜hm. Thus ((h, h), c) can not block µ. �

Therefore, h1 6= h2. Now, we know that couples only violate respon-

siveness for togetherness. Therefore (h1, h2)P
0
c (µ(f), µ(m)) and Lemma 2

imply h2P
0
mµ(m). Since P 0

c follows responsiveness for f , Lemma 2 im-

plies (µ(f), h2)R
0
c(h1, h2). Since ((h1, h2), c) blocks µ, (h1, h2)P

0
c (µ(f), µ(m)).

This in turn means (µ(f), h2)P
0
c (µ(f), µ(m)). Therefore, h2P 0

m|µ(f)µ(m).

However, this implies that m had proposed to h2 and got rejected in some

previous round of Algorithm 3, and hence, dP˜h2m for all d ∈ µ(h2). There-

fore, ((h1, h2), c) cannot block µ.

Since Case 1 and Case 2 are exhaustive, this completes the proof.

[Part (ii)] Suppose P 0
C does not satisfy the SRF property. We show that there

exists an extension of P 0
C with no stable matching.

Since P 0
C does not satisfy the SRF property, there exists a couple c =

{f,m} ∈ C and hospitals h1, h2, h3 ∈ H such that r1(P 0
f ) = h1 6= h3. Further,

(h3, h3)P
0
c (h3, h2) and h2P 0

mh3 but we have h3P
0
f h2. This yields h1P

0
f h3P

0
f h2,

which in turn implies |H| ≥ 3. Since κh ≥ 2 for all h ∈ H, there exist at

least four doctors {d1, d2, d3, d4} ∈ D \ {f,m} and let us denote the set of

doctors {f,m, d1, d2, d3, d4} by D1. Consider a preference pro�le P˜ such that

1. for all h ∈ H \ {h1, h2, h3}, |{d : dP˜hd′ and r1(P˜d) = h}| = κh for

d′ ∈ {f,m, d1, d2, d3, d4},

2. for all h ∈ {h1, h2, h3}, |{d : dP˜hd′ and r1(P˜d) = h}| = κh − 2 for

d′ ∈ {f,m, d1, d2, d3, d4},

3. P 0
c′ satis�es responsiveness for all couples c

′ ∈ C \ {c}, and

4. The preferences of h1, h2, h3 over {f,m, d1, d2, d3, d4} and preferences

of {f,m, d1, d2, d3, d4} over h1, h2, h3 is given by Table 3.

Lemma 4 If a matching µ is stable at P˜ , then µ(d) = r1(P˜d) for all d /∈
{f,m, d1, d2, d3, d4}.
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Proof : Suppose not. Then, there exists a doctor d /∈ {f,m, d1, d2, d3, d4},
such that r1(P˜d) = h, but d /∈ µ(h). Take any doctor d /∈ {f,m, d1, d2, d3, d4}
and let h = r1(P˜d). By the construction of the preference pro�le P˜ , we have|{d′ : d′P˜hd and r1(P˜d′) = h}| < κh. Therefore, there exists d′ ∈ µ(h) and

d′ /∈ {f,m, d1, d2, d3, d4} with r1(P˜d′) 6= h such that either dP˜hd′ or d′P˜hd.
Clearly, if dP˜hd′, then (h, d) blocks µ, a contradiction.

Suppose d′P˜hd and r1(P˜d′) 6= h. Let h′ = r1(d
′). Since r1(d′) = h′ and

(h′, d′) does not block µ (by the assumption that µ is stable), it follows by

using the same argument as in preceding paragraph that there exists a pair

(h′′, d′′) such that h′′ = r1(P˜d′′), d′′ /∈ µ(h′′), d′′ /∈ {f,m, d1, d2, d3, d4}, and
there exists a doctor d̂ ∈ µ(h′′) such that d̂P˜h′′d′′.

Continuing in this manner, by means of Part (1) and Part (2) of the

de�nition of the preference pro�le P˜ , we get hold of a pair (h∗, d∗) such that

h∗ = r1(P˜d∗), d∗ /∈ µ(h∗), d∗ /∈ {f,m, d1, d2, d3, d4}, and d∗P˜h∗ d̄ for some

d̄ ∈ µ(h∗). However, this implies that µ is blocked by (h∗, d∗), a contradiction.

�

Since µ(d) = r1(P˜d) for all d /∈ {f,m, d1, d2, d3, d4}, by the de�nition

of the preference pro�le P˜ , we can restrict our attention to the scenario

presented in Example 3. However, we have already argued the there is no

stable matching for the scenario in Example 3. Therefore, µ cannot be stable.

�

Proof of Theorem 5

Proof : The proof of this theorem is constructive. Suppose P 0
H satis�es

SCPC property. We show that every extension P˜ of P 0
H has a stable matching.

Consider an extension P˜ of P 0
H . Since P

0
C satis�es SCPC, therefore for any

couple c = {f,m} ∈ C and all hospitals h, h′ ∈ H, {d : d ∈ D and dP 0
hf} =

{d : d ∈ D and ddP 0
h′f}. That is the set of doctors preferred to f under

a hospital's preference is the same for of all the hospitals in H. Without
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loss of generality, C = {{f1,m1}, . . . {fk,mk}} where fiP 0
hfj for all i < j ∈

{1, . . . , k} and all h ∈ H.

For any hospital h ∈ H, let F h
i = {d : fi−1P

0
hd and dR0

hfi} for all i ∈
{1, . . . , k}. In other words, F h

i is the collection of doctors who are weakly

preferred to fi and strictly less preferred to fi−1 according to P 0
h . By the

de�nition of SCPC, it follows that F h
i = F h′

i for all h, h′ ∈ H. In view of

this, let us denote F h
i by Fi, that is, let us drop the superscript h.

Now we present an algorithm that produces a stable matching at P˜ .
Algorithm 4: This algorithm involves k+ 1 steps. We present the 1st step

and a general step of the algorithm.

Step 1: Use DPDA to match all the doctors in F1 where all the single doctors

s ∈ S propose according to P˜ s and f1 proposes according to P˜ f1 . Let f1 be
matched to hospital h1.

...

Step j: After matching all the doctors who are ranked above and including

fj−1 in steps 1 to j − 1, use DPDA to match all the doctors in Fj, where all

the singles s ∈ S propose according to P˜ s and fj proposes according to P˜ fj .
Match each (if any) mi ∈ Fj by using DPDA according to P˜m|hi , where hi is
the hospital where fi is matched to.

...

Continue this process till Step k. Having matched all the doctors who are

ranked above and including fk, we proceed to match the remaining doctors in

the following manner. Match each single doctor s ∈ S using DPDA according

to P˜ s, and, as before, match each mi in the set of remaining doctors by using

DPDA according to P˜m|hi , where hi is the hospital where fi is matched to.

Let µ be the outcome of Algorithm 4. We show that µ is stable at P˜ .
By using similar arguments as in Lemma 6, and the fact that we use

DPDA at every stage to match the hospitals, it follows that if a doctor d

is rejected by hospital h at some stage of the algorithm, then (h, d) can not
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block µ. This in particular means that a hospital and a single doctor cannot

block µ. This is because, if a single doctor s prefers a hospital h to µ(s),

then by the de�nition of DPDA, he/she must have already proposed to the

hospital h and got rejected before getting matched with µ(s).

Now we show that ((h1, h2), c) can not block µ for some h1, h2 ∈ H and

c = {f,m} ∈ C. Assume for contradiction that µ is blocked by ((h1, h2), c).

First we show that µ(f)R˜fh1. Suppose not. Since f proposes according

to P˜ f in Algorithm 4, it must be that f had proposed to h1 and got rejected

at some stage of the algorithm. This implies dP 0
h1
f for all d ∈ µ(h1), and

hence, ((h1, h2), c) can not block µ, a contradiction.

Since µ(f)R˜fh1 and couples' preferences satisfy responsiveness with re-

spect to f , we have (µ(f), h2)R˜ c(h1, h2). However, since ((h1, h2), c) blocks

µ, we have (h1, h2)P˜ c(µ(f), µ(m)). Because µ(f)R˜fh1, this implies that

(µ(f), h2)P˜ c(µ(f), µ(m)), and hence, h2P˜m|µ(f)µ(m). Therefore, it follows

that m had proposed to h2 at an earlier stage of the algorithm and got re-

jected implying that dP 0
h2
m for all d ∈ µ(h2). However, this contradicts that

((h1, h2), c) blocks µ.

Since µ can not be blocked by single doctors or couples, µ is stable. �
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