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Abstract

We identify a condition on preference domains that ensures that every locally strategy-

proof and unanimous random social choice function is also strategy-proof. Furthermore

every unanimous, locally strategy-proof deterministic social choice function is also group

strategy-proof. The condition identified is significantly weaker than the characterization

condition for local-global equivalence without unanimity in Kumar et al. (2020). The

condition is not necessary for equivalence with unanimous random/deterministic social

choice functions. However, we show the weaker condition of connectedness remains

necessary.
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1 Introduction

The theory of mechanism design investigates the objectives that can be achieved by a group

of agents (or a planner) when these objectives depend on information held privately by the

agents. Agents must be induced to reveal their private information truthfully: in more formal

terms, the Random/Deterministic Social Choice Function (RSCF/DSCF) representing the

objectives of the planner must be incentive compatible or strategy-proof. A RSCF/DSCF

is strategy-proof if no agent can gain by misrepresenting her preferences irrespective of the

preference announcements of the other agents. In particular, in the random setting, we use

the stochastic dominance notion for strategy-proofness. In many contexts, it is plausible

to assume that an agent can only misrepresent to a “local” preference. The class of locally

strategy-proof RSCFs should, in principle be larger than the class of strategy-proof RSCFs.

However, Carroll (2012) and Sato (2013) demonstrate that for many important preference

domains and a natural notion of localness (adjacency), the classes of locally strategy-proof

and strategy-proof RSCFs/DSCFs coincide. We shall refer to this property as local-global

equivalence. This property has important theoretical and practical implications which are

discussed in both papers.

Kumar et al. (2020) formulate the local-global equivalence problem more generally, in the

context of an “environment”. An environment is a graph where the nodes represent admissible

preferences and the edges, the notion of localness. They characterize environments that satisfy

local-global equivalence. The necessary and sufficient condition for local-global equivalence

requires the existence of certain kinds of paths in the graph. An important aspect of the

paper is that it considers a single-agent model. Our goal in this paper is to show that in

a multi-agent problem, a much weaker condition is sufficient, when the set of RSCFs under

consideration satisfy the familiar and mild efficiency property of unanimity. We note that

imposing unanimity in a single-agent model renders it trivial — it is an interesting requirement

only in a multi-agent problem.1

We consider a model with a finite number of alternatives. A preference domain is a collec-

tion of strict orderings of the alternatives. A pair of preferences is local if there is a single pair

1Formally, the models in Kumar et al. (2020), Carroll (2012) and Sato (2013) are also multi-agent mod-

els. Since they do not impose unanimity, the multi-agent model is indistinguishable from its single-agent

counterpart. For this reason, we choose to refer to the models in these papers as single-agent models.
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of alternatives whose ranking is reversed between the two preferences.2 We consider RSCFs

that satisfy unanimity, i.e. those that respect consensus amongst agents. A domain satisfies

equivalence if every unanimous locally strategy-proof RSCF is also strategy-proof.

In this setting, we show that a condition first identified in Sato (2013) (which we refer to as

Property P ) has very important implications. This condition was shown to be necessary (but

not sufficient) in the single-agent problem by Sato (2013). Property P is a weak condition,

which specifies for every pair of alternatives, the existence of a path where preferences over

this pair are not reversed more than once.3 In contrast, the necessary and sufficient condition

in Kumar et al. (2020) (which they call Property L) requires the existence of a path that

satisfies no-restoration with respect to all alternatives in an appropriate lower contour set.4

We prove two main results using Property P . We show that it is sufficient for equivalence.

In contrast, Kumar et al. (2020) show that the stronger Property L is not sufficient for local-

global equivalence for RSCFs in the single-agent model.5 Furthermore, a stronger result in

the deterministic setting is true: every unanimous, locally strategy-proof DSCF on a domain

satisfying Property P is also group strategy-proof. Our result is independent of the results

in the existing literature on domains where strategy-proofness and group strategy-proofness

are equivalent (see Section 4.1). Our overall conclusion is that imposing the requirement of

unanimity leads to a considerable weakening of the conditions required for equivalence in both

random and deterministic settings.

As mentioned earlier, Property P is a weak condition. It is satisfied by several famil-

iar domains such as the universal domain and the single-peaked domain. However it is not a

necessary condition for a domain to satisfy equivalence of local strategy-proofness and strategy-

proofness for unanimous RSCFs/DSCFs. In Section 4.1, we construct an example demonstrat-

ing this fact. We also show that the weaker condition of connectedness remains necessary for

equivalence.

In recent work, Hong and Kim (2020) independently derive a condition slightly weaker than

our Property P and show that it is sufficient for equivalence.6 They focus on ordinal Bayesian

2This is the “adjacency” notion of localness used in Carroll (2012) and Sato (2013).
3Further discussion of domains satisfying Property P can be found in Section 3.
4Sato (2013) and Carroll (2012) also provide stronger sufficient conditions for equivalence in the single-agent

model.
5Cho (2016) also considers the local-global equivalence issue for RSCFs in the single-agent model. The

paper provides sufficient conditions for a variety of lottery comparisons.
6The two conditions are equivalent if the domain satisfies the following richness property: for every alter-
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incentive compatible DSCFs and dictatorial domains. In contrast, we study RSCFs and extend

our result for DSCFs to cover group strategy-proofness. We discuss their condition further in

Section 4.1 where we also show that it, like Property P , is not necessary for equivalence.

The paper is organized as follows. Section 2 describes the model. Section 3 introduces

and discusses Property P , which is the key condition for our results. The main results are in

Section 4 while Section 5 discusses issues regarding necessity.

2 The Model

Let A = {a, b, . . . } denote a finite set of alternatives with |A| ≥ 3. Let N = {1, 2, . . . , n}

denote a finite set of voters with n ≥ 2. A preference Pi of voter i is an antisymmetric,

complete and transitive binary relation over A, i.e. a linear order. Given a, b ∈ A, aPib is

interpreted as “a is strictly preferred to b” according to Pi. Let rk(Pi), k = 1, . . . , |A| denote

the kth ranked alternative in preference Pi, i.e. [rk(Pi) = a] ⇔
[ ∣∣{x ∈ A : xPia}

∣∣ = k − 1
]
.

Let P denote the set of all preferences - the set P will be referred to as the universal domain.

We shall refer to an arbitrary set D ⊆ P as a domain.7 A preference profile is an n-tuple

P = (P1, P2, . . . , Pn).

Fix a pair of preferences Pi, P
′
i ∈ D. Two alternatives a and b are reversed between Pi

and P ′i if aPib and bP ′ia, or bPia and aP ′i b hold. Accordingly, two preferences Pi and P ′i are

adjacent/local, denoted by Pi ∼ P ′i , if there exists exactly one pair of alternatives that are

reversed between Pi and P ′i ; formally, there exists 1 ≤ k < |A| such that rk(Pi) = rk+1(P
′
i ),

rk(P ′i ) = rk+1(Pi) and rl(Pi) = rl(P
′
i ) for all l /∈ {k, k + 1}. A path π ≡ (P 1

i , . . . , P
t
i ) is a

sequence of non-repeated preferences in D satisfying the property that consecutive preferences

are adjacent, i.e. P k
i ∼ P k+1

i for all k = 1, . . . t − 1. The set of all paths from Pi to P ′i where

Pi, P
′
i ∈ D is denoted by Π(Pi, P

′
i ). The domain D is connected if there exists a path between

every pair Pi, P
′
i ∈ D.

Our model is identical to the models in Sato (2013) and Carroll (2012). It is a special case

of the model in Kumar et al. (2020) where the notion of localness is completely general. On

the other hand, we consider a many-agent setting while Kumar et al. (2020) only consider the

single-agent problem.

Let ∆(A) denote the set of probability distributions over A. An element λ ∈ ∆(A) will

native a, there exists a preference in the domain whose first-ranked alternative is a.
7We assume that all voters have the same preference domain D.
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be referred to as a lottery. We let λa denote the probability with which a ∈ A is selected by

λ. Thus 0 ≤ λa ≤ 1 and
∑

a∈A λa = 1. Given a preference Pi, the lottery λ stochastically

dominates lottery λ′ according to Pi (denoted by λP sd
i λ

′) if
∑t

k=1 λrk(Pi) ≥
∑t

k=1 λ
′
rk(Pi)

for all

1 ≤ t ≤ |A|.

Observation 1 Fix Pi and λ, λ′ ∈ ∆(A) such that λP sd
i λ

′. Pick a, b ∈ A such that aPib. Let

λ̂ ∈ ∆(A) be such that (i) λ̂b > λ′b, (ii) λ̂a < λ′a and (iii) λ̂c = λ′c for all c /∈ {a, b}. Then

λP sd
i λ̂. The lottery λ̂ is obtained by transferring probability weight from an alternative a to a

less preferred one b, in λ′ while keeping all other probabilities unchanged. It is easy to verify

that λ′P sd
i λ̂ from which λP sd

i λ̂ follows immediately.

Definition 1 A Random Social Choice Function (RSCF) is a map ϕ : Dn → ∆(A).

Given a ∈ A, let ϕa(P ) denote the probability with which a is selected at the profile P . A

Deterministic Social Choice Function (DSCF) f : Dn → ∆(A) is a particular RSCF such that

for each P ∈ Dn, fa(P ) = 1 for some a ∈ A. Henceforth, for ease of presentation, we write a

DSCF as f : Dn → A, where an alternative is selected at each preference profile.

We require all RSCFs under consideration to satisfy the property of unanimity. This is

a weak form of efficiency where the RSCF selects a commonly first-ranked alternative with

probability 1 whenever it exists.

Definition 2 A RSCF ϕ : Dn → ∆(A) is unanimous if for all P ∈ Dn,

[r1(Pi) = a for all i ∈ N ]⇒ [ϕa(P ) = 1].

Correspondingly, a DSCF f : Dn → A is unanimous if for all P ∈ Dn, we have [r1(Pi) =

a for all i ∈ N ]⇒ [f(P ) = a]. In order to avoid trivial considerations, we assume throughout

that D contains at least two preferences with distinct peaks.

A RSCF is locally strategy-proof if a voter cannot gain by a misrepresentation to an

adjacent preference (in other words, according to the sincere preference, the social lottery

induced by any misrepresentation to an adjacent preference is always stochastically dominated

by the lottery delivered by truthtelling). On the other hand, a RSCF is strategy-proof if a

voter cannot gain by an arbitrary misrepresentation.

Definition 3 A RSCF ϕ : Dn → A is locally manipulable by an agent i ∈ N at profile

P = (Pi, P−i) if there exists P ′i ∈ D with Pi ∼ P ′i such that ϕ(Pi, P−i)P
sd
i ϕ(P ′i , P−i) does not
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hold, i.e.
∑t

k=1 ϕrk(Pi)(Pi, P−i) <
∑t

k=1 ϕrk(Pi)(P
′
i , P−i) for some 1 ≤ t < |A|. The RSCF ϕ is

locally strategy-proof if it is not locally manipulable by any agent at any profile.

Definition 4 A RSCF ϕ : Dn → A is manipulable by an agent i ∈ N at profile P = (Pi, P−i)

if there exists P ′i ∈ D such that ϕ(Pi, P−i)P
sd
i ϕ(P ′i , P−i) does not hold, i.e.

∑t
k=1 ϕrk(Pi)(Pi, P−i) <∑t

k=1 ϕrk(Pi)(P
′
i , P−i) for some 1 ≤ t < |A|. The RSCF ϕ is strategy-proof if it is not manip-

ulable by any agent at any profile.

A strategy-proof RSCF is clearly locally strategy-proof. We investigate the structure of

domains where the converse is true for all unanimous RSCFs.

Definition 5 The domain D satisfies local-global equivalence for unanimous RSCFs (uLGE)

if every unanimous and locally strategy-proof RSCF ϕ : Dn → ∆(A), n ≥ 2, is strategy-proof.

We can correspondingly define local-global equivalence for DSCFs. A DSCF f : Dn → A is

locally strategy-proof (respectively, strategy-proof ) if for all i ∈ N , Pi, P
′
i ∈ D with Pi ∼ P ′i (re-

spectively, Pi, P
′
i ∈ D) and P−i ∈ Dn−1, either f(Pi, P−i) = f(P ′i , P−i) or f(Pi, P−i)Pif(P ′i , P−i)

holds. The domain D satisfies local-global equivalence for unanimous DSCFs if every unani-

mous and locally strategy-proof DSCF f : Dn → A, n ≥ 2, is strategy-proof.

In the next section, we provide a sufficient condition for uLGE.

3 A Sufficient Condition

In this section, we introduce Property P that is central to our results. Let D be a domain and

a, b ∈ A be a pair of alternatives. A path π = (P 1
i , . . . , P

t
i ) satisfies no {a, b}-restoration if the

relative ranking of a and b is reversed at most once along π, i.e. there does not exist integers

q, r and s with 1 ≤ q < r < s ≤ t such that either (i) aP q
i b, bP

r
i a and aP s

i b, or (ii) bP q
i a, aP

r
i b

and bP s
i a.8

Sato (2013) introduces the pairwise no-restoration property. This property requires that

for every pair of distinct preferences and a pair of alternatives, there exists a path between

the preferences that satisfies no-restoration with respect to the pair of alternatives.

8It is worth emphasizing that in our definition of “{a, b}-restoration”, we are not referring to an ordered

pair {a, b}. Thus {a, b}-restoration and {b, a}-restoration are the same in our definition.
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Definition 6 The domain D satisfies the pairwise no-restoration property (Property P) if for

all distinct Pi, P
′
i ∈ D and distinct a, b ∈ A, there exists a path π = (P 1

i , . . . , P
t
i ) ∈ Π(Pi, P

′
i )

with no {a, b}-restoration.

Property P is satisfied by the universal domain and the domain of single-peaked prefer-

ences. Conversely, Chatterji et al. (2021) show that any domain satisfying Property P and

some additional regularity conditions must either be a sub-domain of the domain of single-

peaked preferences or a hybrid domain which is a “perturbation” of the single-peaked domain.

Alternatives are again ordered as in the single-peaked domain. Alternatives are partitioned

into three segments, left, middle and right. A hybrid domain consists of all preferences satis-

fying the following property: preferences in the left and right segments are single-peaked while

being unrestricted in the middle segment. Hybrid domains cover the universal domain and

the single-peaked domain as special cases, the former in the case where the middle segment is

the entire set of alternatives and the latter where the middle segment is the null set.

Sato (2013) shows that Property P is necessary but not sufficient for the equivalence of

local strategy-proofness and strategy-proofness for DSCFs (henceforth called LGE) in a single-

agent model (or equivalently without imposing unanimity). Kumar et al. (2020) formulate

the lower contour set no-restoration property (Property L) that is necessary and sufficient

condition for LGE in a more general model. Property L is satisfied if for all Pi, P
′
i ∈ D and

a ∈ A, there exists a path π = (P 1
i , . . . , P

t
i ) ∈ Π(Pi, P

′
i ) with no {a, b}-restoration for all

b ∈ L(a, Pi) = {z ∈ A : aPiz}.

Property P is a weaker than Property L. This is illustrated in the example below which

is adapted from Example 3.2 in Sato (2013).

Example 1 Let A = {x, y, z, u, v, w}. The domain D is specified in Table 1. Figure 1 shows

all paths induced by the adjacent preferences in D.

P 1
i P 2

i

{z, y}
P 3
i

{x, y}
P 4
i

{w, u}
P 5
i

{v, u}
P 6
i

{y, x}

P 10
i P 9

i

{w, u}
P 8
i

{v, u}
P 7
i

{z, x}{x, z} {z, y}

Figure 1: Paths induced by the adjacent preferences in D

Figure 1 highlights an important property of D — there are exactly two paths between any

pair of preferences. For example, between P 1
i and P 7

i , there is a path (P 1
i , P

2
i , P

3
i , P

4
i , P

5
i , P

6
i , P

7
i )
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P 1
i P 2

i P 3
i P 4

i P 5
i P 6

i P 7
i P 8

i P 9
i P 10

i

x x y y y x x z z z

z y x x x y z x x x

y z z z z z y y y y

v v v v u u u u v v

w w w u v v v v u w

u u u w w w w w w u

Table 1: The Domain D

and another path (P 1
i , P

10
i , P 9

i , P
8
i , P

7
i ). We shall refer to the former as the “clockwise” path

and the latter as the “counter clockwise” path between P 1
i and P 7

i . We shall in fact, refer to

the clockwise and counter clockwise paths between any pair of preferences in D. It can be

verified that for any pair of distinct preferences and alternatives, either the clockwise path or

the counter clockwise path is a path without restoration for the alternatives. Therefore, D

satisfies Property P . However, it fails Property L, e.g. z, y ∈ L(x, P 1
i ), and the clockwise path

from P 1
i to P 7

i has an {x, y}-restoration while the counter clockwise path from P 1
i to P 7

i has

an {x, z}-restoration. We know there that LGE fails for D. For instance, let N = {1, 2} and

consider the following DSCF:

f(P1, P2) =


z P1 = P 1

i ,

y P1 = P 2
i , and

r1(P1) otherwise.

It is easy to verify that f is locally strategy-proof but fails strategy-proofness, e.g. f(P 6
1 , P2) =

x, f(P 1
1 , P2) = z and xP 1

1 z.9 It also violates unanimity, e.g. f(P 1
1 , P

2
2 ) = z 6= x. Our result

implies that every locally strategy-proof RSCF that fails to be strategy-proof on this domain

must violate unanimity. Furthermore, every DSCF satisfying unanimity and local strategy-

proofness is group strategy-proof. �

4 Main Results

Kumar et al. (2020) show that Property L does not guarantee that locally strategy-proof

RSCFs are also strategy-proof. In this section, we show that this equivalence holds for unan-

9Here, (P 6
1 , P2) is a preference profile where agent 1’s preference is P 6

i and agent 2’s preference is P2 which

is arbitrary. Similarly, (P 1
1 , P2) is a profile where agent 1’s preference is P 1

i and agent 2’s preference is P2.
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imous RSCFs defined over domains satisfying the weaker Property P .

Theorem 1 If a domain satisfies Property P, it satisfies uLGE.

Proof : Pick a domain D that satisfies Property P . Consider an arbitrary locally strategy-

proof RSCF ϕ : Dn → ∆(A) that satisfies unanimity. We will show that ϕ is strategy-proof.

We begin with an observation.

Observation 2 Consider Pi, P̄i ∈ D such that Pi ∼ P̄i; in particular xPiy and yP̄ix. If

ϕ(Pi, P−i) 6= ϕ(P̄i, P−i) for some P−i ∈ Dn−1, then it must be the case that (i) ϕy(P̄i, P−i) >

ϕy(Pi, P−i), (ii) ϕx(P̄i, P−i) < ϕx(Pi, P−i) and (iii) ϕz(P̄i, P−i) = ϕz(Pi, P−i) for all z /∈ {x, y}.

These properties are well-known in the literature. Gibbard (1977) refers to Parts (i) and (ii)

as the property of being non-perverse and Part (iii) as the property of being localized.

Lemma 1 Let Pi, P̄i ∈ D be such that Pi ∼ P̄i and r1(Pi) = r1(P̄i). Then ϕ(Pi, P−i) =

ϕ(P̄i, P−i) for all P−i ∈ Dn−1.

Proof : Assume w.l.o.g. that i is agent 1. Let P1, P̄1 ∈ D be such that P1 ∼ P̄1 and r1(P1) =

r1(P̄1) = a. Let x, y be the alternatives that are reversed between P1 and P̄1 with xP1y and

yP̄1x.

Let P k ≡ (P1, P2, . . . , Pk, P1, . . . , P1), i.e. P k is the profile where agents 1 and k + 1, . . . , n

have the preference P1 while agents 2, . . . , k have preferences specified in the profile P−1. Here

k ∈ {1, . . . , n} where P 1 = (P1, P1, . . . , P1) and P n = (P1, P2, . . . , Pn).

Let P̄ k ≡ (P̄1, P2, . . . , Pk, P1, . . . , P1), i.e. P̄ k is the profile where agent 1 has the preference

P̄1, agents k+ 1, . . . , n have the preference P1 and agents 2, . . . , k have preferences specified in

the profile P−1. Again k ∈ {1, . . . , n} where P̄ 1 = (P̄1, P1, . . . , P1) and P̄ n = (P̄1, P2, . . . , Pn).

We will prove ϕ(P n) = ϕ(P̄ n) by induction on k. Observe that ϕa(P
1) = ϕa(P̄

1) = 1 since

ϕ satisfies unanimity. Assume that ϕ(P k−1) = ϕ(P̄ k−1) for k − 1 < n. We will show that

ϕ(P k) = ϕ(P̄ k).

We assume w.l.o.g. xPky. Since D satisfies Property P , there exists a path (P 1
k , . . . , P

T
k ) ∈

Π(P1, Pk) such that xP r
k y for all r ∈ {1, . . . , T}.

Let P k,r ≡ (P1, P2, . . . , Pk−1, P
r
k , P1, . . . , P1) and P̄ k,r ≡ (P̄1, P2, . . . , Pk−1, P

r
k , P1, . . . , P1).

The induction hypothesis implies that ϕ(P k,1) = ϕ(P̄ k,1). Suppose ϕ(P k,T ) 6= ϕ(P̄ k,T ). Let t

be the smallest integer in the set {1, . . . , T} such that ϕ(P k,t) ≡ λ 6= λ̄ ≡ ϕ(P̄ k,t). Clearly,

t > 1. Observe that the profiles P k,t and P̄ k,t differ only in the preferences of agent 1 with

9



P1 in the former profile and P̄1 in the latter. Thus, local strategy-proofness implies λP sd
1 λ

′

and then Observation 2 implies λ̄y − λy > 0, λ̄x − λx < 0 and λ̄z = λz for all z /∈ {x, y}. By

the induction hypothesis, let ϕ(P k,t−1) = ϕ(P̄ k,t−1) ≡ λ′. Observe that the profiles P k,t−1 and

P k,t (respectively, profiles P̄ k,t−1 and P̄ k,t) differ only in the preferences of agent k being P t−1
k

in the former profile and P t
k in the latter. Since P t−1

k ∼ P t
k, local strategy-proofness implies

that both λ and λ̄ stochastically dominate λ′ according to P t
k, and λ′ stochastically dominates

both λ and λ̄ according to P t−1
k , and moreover there must be exactly one pair of alternatives

which are reversed between P t−1
k and P t

k. This pair cannot be {x, y} because xP r
k y for all P r

k

belonging to the path π. Suppose this pair is {a, x} with a 6= y: in this case, by Part (iii) of

Observation 2, λ′y = λy and λ′y = λ̄y contradicting our hypothesis that λ̄y−λy > 0. If the pair

is {a, y} with a 6= x, we contradict our assumption λ̄x − λx < 0. Similarly if the pair is {a, b}

with a 6= x and y 6= b, we contradict both λ̄y − λy > 0 and λ̄x − λx < 0. This completes the

proof. �

Lemma 2 Let P ≡ (Pi, P−i) ∈ Dn be a profile and a ∈ A be an alternative. Let P̄i ∈ D

and suppose there exists a path π = (P 1
i , . . . , P

T
i ) ∈ Π(Pi, P̄i) such that a 6= r1(P

k
i ) for all

k ∈ {1, . . . , T}. Then ϕa(Pi, P−i) = ϕa(P̄i, P−i).

Proof : Suppose the Lemma is false. Let t ≥ 2 be the smallest integer in the set {1, . . . , T}

such that ϕa(P
t−1
i , P−i) 6= ϕa(P

t
i , P−i). Consider the preferences P t−1

i and P t
i . If r1(P

t−1
i ) =

r1(P
t
i ), we have an immediate contradiction to Lemma 1. The remaining possibility is r1(P

t−1
i ) 6=

r1(P
t
i ). Here, there must be a reversal of the first and second ranked alternatives in P t−1

i to

obtain P t
i . By assumption, a cannot be first or second ranked in either P t−1

i or P t
i ; other-

wise a would be ranked first in either P t−1
i or P t

i . Then, Part (iii) of Observation 2 implies

ϕa(P
t−1
i , P−i) = ϕa(P

t
i , P−i) contradicting our initial assumption. �

We can now complete the proof of the result. Let P = (Pi, P−i) be a profile and P̄i ∈ D.

We will show ϕ(Pi, P−i)P
sd
i ϕ(P̄i, P−i). Pick an arbitrary path π = (P 1

i , . . . , P
t
i , . . . , P

T
i ) ∈

Π(Pi, P̄i). We will prove the result by induction on t.

The conclusion for the initial step (t = 2) follows from local strategy-proofness. As-

sume that ϕ(Pi, P−i)P
sd
i ϕ(P t−1

i , P−i) for some t > 2. We will show ϕ(Pi, P−i)P
sd
i ϕ(P t

i , P−i). If

ϕ(P t−1
i , P−i) = ϕ(P t

i , P−i), then the result follows immediately. Assume therefore ϕ(P t−1
i , P−i) 6=

ϕ(P t
i , P−i). Immediately, since P t−1

i ∼ P t
i , by Lemma 1, it must be the case that r1(P

t−1
i ) ≡

10



a 6= b ≡ r1(P
t
i ). Thus, we know that the only reversal between P t−1

i and P t
i is of a and b,

and hence by Observation 2, ϕb(P
t
i , P−i) > ϕb(P

t−1
i , P−i), ϕa(P

t
i , P−i) < ϕa(P

t−1
i , P−i) and

ϕc(P
t
i , P−i) = ϕc(P

t−1
i , P−i) for all c /∈ {a, b}. Consequently, if aPib, the conclusion follows

from Observation 1. For the remainder of the argument, we assume bPia.

Let b be the qth-ranked alternative in Pi, i.e. b = rq(Pi) where 1 ≤ q < |A|. Pick an arbi-

trary integer K between 1 and |A|. We will show
∑K

s=1 ϕrs(Pi)(Pi, P−i) ≥
∑K

s=1 ϕrs(Pi)(P
t
i , P−i)

thereby establishing ϕ(Pi, P−i)P
sd
i ϕ(P t

i , P−i). We consider two cases.

Suppose 1 ≤ K < q. Then the alternatives ranked above the Kth-ranked alternative in Pi

do not involve either a or b. By virtue of Part (iii) of Observation 2, the total probability on

these alternatives is unchanged between ϕ(P t−1
i , P−i) and ϕ(P t

i , P−i). In conjunction with the

induction hypothesis, we have
∑K

s=1 ϕrs(Pi)(Pi, P−i) ≥
∑K

s=1 ϕrs(Pi)(P
t
i , P−i) as required.

Suppose q ≤ K ≤ |A|. Pick an arbitrary c ∈ A such that bPic. Since b = r1(P
t
i ), we must

have bP t
i c. Property P implies the existence of a path π̄ ∈ Π(Pi, P

t
i ) such that bP̄ r

i c for all P̄ r
i

along the path π̄. Hence, r1(P̄
r
i ) 6= c for all P̄ r

i along π̄. Applying Lemma 2, we can conclude

ϕc(Pi, P−i) = ϕc(P
t
i , P−i). Consequently the total probability of alternatives ranked strictly

below the Kth-ranked alternative in Pi is the same in ϕ(Pi, P−i) and ϕ(P t
i , P−i). Equivalently,

the total probability of alternatives ranked above the Kth-ranked alternative in Pi is the same

in ϕ(Pi, P−i) and ϕ(P t
i , P−i), i.e.

∑K
s=1 ϕrs(Pi)(Pi, P−i) ≥

∑K
s=1 ϕrs(Pi)(P

t
i , P−i). This completes

the proof. �

Theorem 1 leads immediately to the following corollary.

Corollary 1 If a domain satisfies Property P, it satisfies local-global equivalence for unan-

imous DSCFs.

The arguments in the proof of Theorem 1 can be used to show that any locally strategy-

proof and unanimous RSCF defined on a domain satisfying Property P also satisfies the

important property of tops-onlyness.10

Definition 7 A RSCF ϕ : Dn → ∆(A) satisfies the tops-only property if for all P, P ′ ∈ Dn,

we have [r1(Pi) = r1(P
′
i ) for all i ∈ N ]⇒ [ϕ(P ) = ϕ(P ′)].

Suppose a RSCF satisfies the tops-only property. Then its value at any profile depends

only on the peaks of the agent preferences in the profile.

10See Chatterji and Sen (2011) and Chatterji and Zeng (2018) for a discussion of this property.

11



Corollary 2 If the domain D satisfies Property P, every unanimous and locally strategy-

proof RSCF ϕ : Dn → ∆(A) satisfies the tops-only property.

Proof : Fix a unanimous and locally strategy-proof RSCF ϕ : Dn → ∆(A). To verify

the tops-only property, it suffices to show that for all i ∈ N , Pi, P
′
i ∈ D and P−i ∈ Dn−1,

[r1(Pi) = r1(P
′
i )]⇒ [ϕ(Pi, P−i) = ϕ(P ′i , P−i)].

Pick i ∈ N , Pi, P
′
i ∈ D and P−i ∈ Dn−1 such that r1(Pi) = r1(P

′
i ) ≡ x. If Pi ∼ P ′i , Lemma

1 immediately implies ϕ(Pi, P−i) = ϕ(P ′i , P−i). Suppose it is not the case that Pi ∼ P ′i . To

show ϕ(Pi, P−i) = ϕ(P ′i , P−i), it suffices to show ϕa(Pi, P−i) = ϕa(P
′
i , P−i) for all a ∈ A\{x}.

Pick a ∈ A\{x}. Since r1(Pi) = r1(P
′
i ) = x 6= a, Property P implies the existence of a

path π ∈ Π(Pi, P
′
i ) such that xP r

i a for all P r
i along the path π. Thus, r1(P

r
i ) 6= a for all

P r
i along the path π. Then, Lemma 2 implies ϕa(Pi, P−i) = ϕa(P

′
i , P−i). This also implies

ϕx(Pi, P−i) = ϕx(P ′i , P−i) so that ϕ(Pi, P−i) = ϕ(P ′i , P−i), as required. �

Corollary 2 generalizes Theorem 1 of Chatterji and Zeng (2018) on domains satisfying

Property P . Their strategy-proofness is weakened to local strategy-proofness, their Interior

property becomes redundant and the requirement of their Exterior property is met by Property

P . For instance, the domain in Example 1 violates the Interior property but satisfies Property

P .

4.1 Group Strategy-proofness

Our goal in this subsection is to show that when turning to the deterministic setting, any locally

strategy-proof, unanimous DSCF defined on a domain satisfying Property P also satisfies the

stronger property of group strategy-proofness, i.e. no coalition of agents can strictly improve

by a joint misrepresentation of their preferences.11 We denote a coalition by S ⊆ N where S

is non-empty. A preference profile for the coalition S is denoted by PS and a preference profile

P ∈ Dn is written as (PS, P−S).

Definition 8 A DSCF f : Dn → A is group manipulable by a coalition S ⊆ N at profile

P = (PS, P−S) if there exists P ′S ∈ D|S| such that f(P ′S, P−S)Pif(PS, P−S) for all i ∈ S. The

DSCF is group strategy-proof if it is not group manipulable by any coalition at any profile.

11In the random setting, the notion of group strategy-proofness is too demanding. For instance, Corollary

1 of Morimoto (2020) implies that “most” unanimous and strategy-proof RSCFs defined on the domain of

single-peaked preferences, which of course satisfies Property P , are group manipulable.
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Our main result in this section is the following.

Theorem 2 If the domain D satisfies Property P, every unanimous and locally strategy-proof

DSCF is group strategy-proof.

Proof : Let A = {a ∈ A : r1(P ) = a for some P ∈ D} be the set of alternatives that

are first-ranked for some preferences in D. Recall that D is assumed to contain at least two

preferences with distinct peaks. Hence, |A| ≥ 2. Fix a unanimous and locally strategy-proof

DSCF f : Dn → A. The range of f is defined as R(f) = {a ∈ A : f(P ) = a for some P ∈ Dn}.

Unanimity implies A ⊆ R(f). Lemmas 1, 2 and Corollary 1 hold for f , i.e. f is strategy-proof.

Lemma 3 R(f) = A.

Proof : Suppose not, i.e. there exists P = (P1, P2, . . . , Pn) ∈ Dn such that f(P ) = a /∈ A.

Let r1(P1) = x. Thus x ∈ A. Let P ′ = (P ′1, P
′
2, . . . , P

′
n) ∈ Dn be a preference profile such that

P ′i = P1 for all i ∈ N . For each i ∈ {2, . . . , n}, we pick an arbitrary path πi ∈ Π(Pi, P
′
i ).

12

Since a /∈ A, there does not exist any preference P r
i in the path πi with r1(P

r
i ) = a. We can

move from P to P ′ by changing Pi to P ′i for each i ranging from i = 2 to i = n. According

to paths π2, . . . , πn, by repeatedly applying Lemma 2, we have f(P ′) = f(P ) = a 6= x which

contradicts unanimity. Therefore R(f) = A. �

In order to prove the theorem, we will prove the following equivalent reformulation of

group strategy-proofness: for all S ⊆ N , PS, P
′
S ∈ D|S| and P−S ∈ D|N\S|, either f(PS, P−S) =

f(P ′S, P−S) or f(PS, P−S)Pif(P ′S, P−S) for some i ∈ S.

We will prove this by induction on the cardinality of S. The case where |S| = 1 reduces to

strategy-proofness which is implied by Corollary 1. Assume that the statement above holds

for all S ⊆ N such that |S| ≤ t− 1 < n. We will show that the statement holds for all S ⊆ N

where |S| = t.

Suppose not, i.e. there exists S ⊆ N (with |S| = t) such that f(P ′S, P−S) = b, f(PS, P−S) =

a and bPia for all i ∈ S. Since b ∈ R(f), Lemma 3 implies that there exists P ∗i ∈ D such that

r1(P
∗
i ) = b. Furthermore, since f(P ′S, P−S) = b, strategy-proofness implies f(P ∗S , P−S) = b

where every voter of S has the preference P ∗i .

Since f(PS, P−S) = a 6= b = f(P ∗S , P−S), we have a voter j ∈ S such that Pj 6= P ∗i . By

Property P , we have a path π = (P 1
j , . . . , P

v
j ) ∈ Π(Pj, P

∗
i ) with no {a, b}-restoration. Since

12If Pi = P ′i , πi is the null path that begins and terminates at Pi.
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bPja and bP ∗i a, no {a, b}-restoration on π implies bP k
j a for all k = 1, . . . , v. Hence, r1(P

k
j ) 6= a

for all k = 1, . . . , v. Since f(Pj, PS\{j}, P−S) = a, Lemma 2 implies f(P ∗i , PS\{j}, P−S) = a.13

Since f(P ∗i , PS\{j}, P−S) = a and f(P ∗i , P
∗
S\{j}, P−S) = b, coalition S\{j} can group manipulate

at profile (P ∗i , PS\{j}, P−S), which contradicts the induction hypothesis. This completes the

proof. �

There are some papers that investigate preference domains on which equivalence of strategy-

proofness and group strategy-proofness holds. Barberà et al. (2010) consider a more general

setting than ours in the following respects: (i) the alternative set is either finite or infinite, (ii)

preferences can admit indifference, (iii) preference domains can vary across different voters,

and (iv) unanimity is not exogenously imposed on DSCFs. On the other hand, our result

has a weaker premise — local strategy-proofness rather than strategy-proofness. In addition

our Property P is far simpler (especially in the computational sense) than their sequential

inclusion condition.14 The latter is a condition imposed on preference profiles while Property

P is a condition imposed only on preferences in a domain. Our result is not implied by theirs -

for example, the domain of single-peaked preferences on a tree introduced by Demange (1982)

is covered by our condition but not by theirs.

Property P is also independent of the sufficient condition identified in Le Breton and

Zaporozhets (2009) for the equivalence of strategy-proofness and group strategy-proofness. For

instance, consider a domain D consisting of the three preferences P 1
i = (a b c d), P 2

i = (a b d c)

and P 3
i = (b a d c).15 This domain satisfies Property P but violates the richness condition of

Le Breton and Zaporozhets (2009) — though bP 1
i c and cP 1

i d, there exists no preference Pi ∈ D

such that r1(Pi) = b and cPid.

5 Necessity

We have already shown that Property P guarantees uLGE and ensures that in the determin-

istic setting, local strategy-proofness implies group strategy-proofness. However, it is not a

necessary condition for uLGE as Example 2 shows.

13Here agent j has the preference P ∗i in the profile (P ∗i , PS\{j}, P−S).
14According to Section 4.1 of Kumar et al. (2020), verifying whether Property L, which as mentioned is

significantly stronger than Property P , is satisfied is not computationally hard.
15For notational convenience, we specify preferences here horizontally. For instance, P 1

i = (a b c d) represents

that a is top-ranked, b is second-ranked, c is third-ranked, and d is bottom-ranked.
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Example 2 Let A = {a, b, c, d, x, y}. The domain D is specified in Table 2 and Figure 2

illustrates the path induced by the adjacent preferences in D. Note that there is a single path

between P 1
i and P 6

i which has a {b, c}-restoration. It follows that D violates Property P .

P 1
i P 2

i P 3
i P 4

i P 5
i P 6

i

a a a a a b

b c c c b a

c b b b c c

d d d y y y

x x y d d d

y y x x x x

Table 2: The Domain D

P 1
i P 2

i

{b, c}
P 3
i

{x, y}
P 4
i

{d, y}
P 5
i

{c, b}
P 6
i

{a, b}

Figure 2: The path induced by the adjacent preferences in D

Let ϕ : Dn → ∆(A) be an arbitrary unanimous and locally strategy-proof RSCF. Observe

that the first-ranked alternatives in each of the preferences in D is either a or b. In order for

ϕ to satisfy unanimity, it must be the case that a and b exhaust the whole probability at each

preference profile, i.e. ϕa(P ) + ϕb(P ) = 1 for all P ∈ Dn.16 Consequently, at profiles (Pi, P−i)

and (P ′i , P−i) such that Pi ∼ P ′i , zPiz
′, z′P ′iz and {z, z′} 6= {a, b}, we have ϕ(Pi, P−i) =

ϕ(P ′i , P−i). Therefore, the {b, c}-restoration alluded to earlier, is irrelevant. Finally, since the

path of Figure 2 has no {a, b}-restoration, it is easy to show that D satisfies uLGE following

the proof of Theorem 1. �

Hong and Kim (2020) restrict attention to DSCFs, focus on ordinal Bayesian incentive

compatibility, and establish uLGE for domains satisfying a property called Sparsely Connected

Domain without Restoration (or SCD). This property requires the existence of paths without

16Let D1 = {P 1
i , P

2
i , P

3
i , P

4
i , P

5
i } and D2 = {P 6

i }. Given a profile P ∈ Dn, if Pi ∈ D1 for all i ∈ N ,

unanimity implies ϕa(P ) = 1. Symmetrically, ϕb(P ) = 1 if Pi ∈ D2 for all i ∈ N . Suppose ϕz(P ) > 0 for some

z ∈ A\{a, b} and some P ∈ Dn. It must be the case that Pi ∈ D1 and Pj ∈ D2 for some i, j ∈ N . Assume for

notational convenience that Pi ∈ D1 for all i = 1, . . . , s and Pj = P 6
i for all j = s+ 1, . . . , n, where 1 ≤ s < n.

Let P ′s+1 = · · · = P ′n = P 5
i and P ` = (P1, . . . , Ps, P

′
s+1, . . . , P

′
` , P`+1, . . . , Pn) for all ` = s + 1, . . . , n. Thus,

P ′j ∼ Pj for all j = s + 1, . . . , n, and unanimity implies ϕa(Pn) = 1 and hence ϕz(Pn) = 0. Consequently,

Observation 2 implies 0 = ϕz(Pn) = · · · = ϕz(P s+1) = ϕz(P ) > 0. Contradiction.
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restoration for all pairs of alternatives such that at least one of the two alternatives is first-

ranked in some preference in the domain. This condition is slightly weaker than Property P

since the no-restoration requirement is imposed only on a subset of all pairs of alternatives.

However, SCD is not necessary for uLGE either. For instance, the domain in Example 2

violates SCD because the path of Figure 2 has a {b, c}-restoration and b is first-ranked in P 6
i .

A characterization of domains that satisfy uLGE remains an open problem. However, we

are able to show that uLGE implies connectedness of a domain.

Proposition 1 If a domain satisfies uLGE, it is connected.

Proof : Pick a domain D that satisfies uLGE. Suppose that domain D is not connected. We

can then partition D into two non-empty subsets D1 and D2 such that there does not exist

any Pi ∈ D1 and P ′i ∈ D2 with Pi ∼ P ′i .

There are several cases to consider. In each one, we find a set of agents and construct a

unanimous, locally strategy-proof and manipulable DSCF. We begin with an observation that

we will use frequently.

Observation 3 We consider a particular class of DSCFs in this setting. We say that a DSCF

f is local if for all i ∈ N , P−i ∈ Dn−1, j ∈ {1, 2} and Pi, P
′
i ∈ Dj,

[f(Pi, P−i) 6= f(P ′i , P−i)]⇒ [f(Pi, P−i) = r1(Pi) and f(P ′i , P−i) = r1(P
′
i )].

Suppose that agent i’s true preference is Pi ∈ Dj for some j ∈ {1, 2}. A local misrepresentation

of Pi is some preference P ′i that also belongs to Dj. Thus local DSCFs are locally strategy-

proof.

Case 1: There exist P̄i ∈ D1 and P̂i ∈ D2 such that r1(P̄i) = r1(P̂i).

Let N = {1, 2}. Consider the following DSCF:

f(P1, P2) =

 r1(P1) if P1, P2 ∈ D1 or P1, P2 ∈ D2, and

r1(P2) otherwise.

The outcome at each preference profile is the first-ranked alternative of some voter’s pref-

erence; it is evident that f is unanimous. It is easy to verify that f is local.17 Then,

17For agent 1, pick P1, P
′
1 ∈ Dj for some j ∈ {1, 2} and P2 ∈ D. If f(P1, P2) 6= f(P ′1, P2), we can deduce that

P2 ∈ Dj . Hence f(P1, P2) = r1(P1) and f(P ′1, P2) = r1(P ′1). For agent 2, fix P2, P
′
2 ∈ Dj for some j ∈ {1, 2}

and P1 ∈ D. If f(P1, P2) 6= f(P1, P
′
2), we immediately deduce that P1 /∈ Dj . Hence f(P1, P2) = r1(P2) and

f(P1, P
′
2) = r1(P ′2). Therefore, f is local.
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Observation 3 implies local strategy-proofness. However, f is not strategy-proof. Suppose

r1(P̄i) = r1(P̂i) = x. Recall that D is assumed to contain at least two preferences with distinct

peaks. Therefore, there exists P2 ∈ D such that r1(P2) = y 6= x. Suppose P2 ∈ D2. Then

f(P̄i, P2) = y and f(P̂i, P2) = x.18 Agent 1 will then manipulate at (P̄i, P2) via P̂i. If P2 ∈ D1,

we have f(P̄i, P2) = x and f(P̂i, P2) = y. Then, agent 1 will manipulate at (P̂i, P2) via P̄i.

This contradicts the hypothesis that D satisfies uLGE.

Case 1 implies that all preferences with the same first-ranked alternative must belong to

the same subset of D, i.e. [P ′i ∈ Dj and r1(P
′′
i ) = r1(P

′
i )] ⇒ [P ′′i ∈ Dj], for j = 1, 2. Let

τ(Dj) = {a ∈ A : r1(Pi) = a for some Pi ∈ Dj}, for j = 1, 2. We consider two cases, labelled

Case 2 and 3. In each case, we show the existence of a unanimous, locally strategy-proof and

manipulable DSCF.

Case 2: |τ(Dj)| > 1 for some j ∈ {1, 2}.

Assume w.l.o.g. that |τ(D2)| > 1. Let x, y ∈ τ(D2) and P ∗i ∈ D1. Assume w.l.o.g. that

xP ∗i y. Let N = {1, 2}. Consider the following DSCF:

f(P1, P2) =

 r1(P1) if P1, P2 ∈ D1 or P1, P2 ∈ D2, and

y otherwise.

Let (P1, P2) be a profile such that r1(P1) = r1(P2). By virtue of our assumption, it must be

the case that P1, P2 ∈ Dj, for some j ∈ {1, 2}. Since f picks an agent’s first-ranked alternative

in such a profile, it is clear that f satisfies unanimity. Again f is local.19 So Observation 3

implies that f is locally strategy-proof. Finally, we show that f is not strategy-proof. Since

x ∈ τ(D2), there exists P1 ∈ D2 with r1(P1) = x. By construction, f(P1, P
∗
i ) = y and

f(P1, P1) = x. Since xP ∗i y, agent 2 manipulates at (P1, P
∗
i ) via P1. Therefore Case 2 cannot

occur.

Case 3: |τ(D1)| = |τ(D2)| = 1.

Let τ(D1) = {x} and τ(D2) = {y}. Recall that |A| ≥ 3. Accordingly, we consider two

subcases: (A) there exists P ∗i ∈ D such that r|A|(P
∗
i ) = z /∈ {x, y}, and (B) r|A|(Pi) ∈ {x, y}

for all Pi ∈ D.

18Here (P̄i, P2) is the profile where agent 1’s preference is P̄i and agent 2’s preference is P2. Similarly (P̂i, P2)

is the profile where agent 1’s preference is P̂i and agent 2’s preference is P2.
19 Arguing as we did in Footnote 17, by picking P1, P

′
1 ∈ Dj for some j ∈ {1, 2} and P2 ∈ D, we can infer

[f(P1, P2) 6= f(P ′1, P2)] ⇒ [f(P1, P2) = r1(P1) and f(P ′1, P2) = r1(P ′1)]. Next, fixing P2, P
′
2 ∈ Dj for some

j ∈ {1, 2} and P1 ∈ D, we always have f(P1, P2) = f(P1, P
′
2) by the construction of f . Therefore, f is local.
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Case 3A: Assume w.l.o.g. that r1(P
∗
i ) = x, i.e. P ∗i ∈ D1. By assumption, yP ∗i z. Let N = {1, 2}

and consider the following DSCF:

f(P1, P2) =


x if P1, P2 ∈ D1,

y if P1, P2 ∈ D2, and

z otherwise.

It is easy to verify that f satisfies unanimity. Local strategy-proofness follows again from

Observation 3 as f is local.20 Again f is not strategy-proof. Pick P2 ∈ D2. By construction

f(P ∗i , P2) = z and f(P2, P2) = y. Since yP ∗i z, agent 1 manipulates at (P ∗i , P2) via P2.

Case 3B: Since |A| ≥ 3, there must exist z ∈ A\{x, y} and P̂i ∈ D such that zP̂iy or zP̂ix

holds. We assume w.l.o.g. that zP̂iy. Thus P̂i ∈ D1. Let N = {1, 2, 3} and consider the

following DSCF.

f(P1, P2, P3) =



x if P1, P2, P3 ∈ D1,

y if P1, P2, P3 ∈ D2,

y if Pi ∈ D2 for some i ∈ {1, 2, 3} and Pj ∈ D1 for all j 6= i, and

z if Pi ∈ D1 for some i ∈ {1, 2, 3} and Pj ∈ D2 for all j 6= i.

In order to show unanimity, we need to only consider profiles where all agents have pref-

erences belonging to the same Dj. In each of these cases, f picks the commonly first-ranked

alternative. Also f is local,21 and we can deduce that f is locally strategy-proof from Ob-

servation 3. Finally we show that f is not strategy-proof. Consider the profile (P̂i, P̂i, P3)

where voters 1 and 2 report the preference P̂i, and voter 3 reports a preference P3 ∈ D2. By

construction, f(P̂i, P̂i, P3) = y. Consider another profile (P̂i, P3, P3) where voter 1 reports the

preference P̂i, and voters 2 and 3 reports the preference P3. By construction, f(P̂i, P3, P3) = z.

Consequently agent 2 will manipulate at (P̂i, P̂i, P3) via P3 since zP̂iy.

This concludes the proof of Proposition 1. �

20Fixing P1, P
′
1 ∈ Dj for some j ∈ {1, 2} and P2 ∈ D, we always have f(P1, P2) = f(P ′1, P2) by the

construction of f . Symmetrically, fixing P2, P
′
2 ∈ Dj for some j ∈ {1, 2} and P1 ∈ D, we also have f(P1, P2) =

f(P1, P
′
2) by the construction of f . Therefore, f is local vacuously.

21Fixing arbitrary i ∈ N , Pi, P
′
i ∈ Dj for some j ∈ {1, 2} and P−i ∈ Dn−1, it is easy to show that

f(Pi, P−i) = f(P ′i , P−i) by the construction of f . Therefore, f is local vacuously.
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